Shinjita Acharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11639095/publications.pdf

Version: 2024-02-01

516710 713466 1,118 21 16 21 citations g-index h-index papers 21 21 21 2100 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Elucidating the Evolving Atomic Structure in Atomic Layer Deposition Reactions with in Situ XANES and Machine Learning. Chemistry of Materials, 2019, 31, 8937-8947.	6.7	23
2	Synthesis of Submicron PEDOT Particles of High Electrical Conductivity via Continuous Aerosol Vapor Polymerization. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47320-47329.	8.0	13
3	The interface of SiO2/ZnS films studied by high resolution X-ray photoluminescence. Theoretical and Applied Mechanics Letters, 2018, 8, 24-27.	2.8	3
4	Studying Electrical Conductivity Using a 3D Printed Four-Point Probe Station. Journal of Chemical Education, 2017, 94, 950-955.	2.3	34
5	Ultrahigh stability of high-power nanofibrillar PEDOT supercapacitors. Sustainable Energy and Fuels, 2017, 1, 482-491.	4.9	17
6	Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. Journal of Materials Chemistry A, 2017, 5, 11772-11780.	10.3	51
7	Revealing the Bonding Environment of Zn in ALD Zn(O,S) Buffer Layers through X-ray Absorption Spectroscopy. ACS Applied Materials & ACS Applied Ma	8.0	23
8	Conducting Polymers for Pseudocapacitive Energy Storage. Chemistry of Materials, 2016, 28, 5989-5998.	6.7	389
9	Enhancing Cycling Stability of Aqueous Polyaniline Electrochemical Capacitors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29452-29460.	8.0	29
10	ALD Zn(O,S) Thin Films' Interfacial Chemical and Structural Configuration Probed by XAS. ACS Applied Materials & Configuration Probability & Configuration Probed by XAS. ACS Applied Materials & Configuration Probed by XAS. ACS Applied Materials & Configuration Probed by XAS. ACS Applied Materials & Configuration Probability & Configuration Probed by XAS. ACS Applied Materials & Configuration Probability	8.0	17
11	Relating Electronic and Geometric Structure of Atomic Layer Deposited BaTiO ₃ to its Electrical Properties. Journal of Physical Chemistry Letters, 2016, 7, 1428-1433.	4.6	18
12	Self-limiting atomic layer deposition of barium oxide and barium titanate thin films using a novel pyrrole based precursor. Journal of Materials Chemistry C, 2016, 4, 1945-1952.	5 . 5	26
13	Exploring the local electronic structure and geometric arrangement of ALD Zn(O,S) buffer layers using X-ray absorption spectroscopy. Journal of Materials Chemistry C, 2015, 3, 12192-12198.	5. 5	24
14	Vortexâ€Pattern Selfâ€Assembly in Mnâ€Doped ZnSe Nanorods. Chemistry - A European Journal, 2014, 20, 3922-3926.	3.3	6
15	Zinc Blende 0D Quantum Dots to Wurtzite 1D Quantum Wires: The Oriented Attachment and Phase Change in ZnSe Nanostructures. Journal of Physical Chemistry Letters, 2013, 4, 3292-3297.	4.6	41
16	Material Diffusion and Doping of Mn in Wurtzite ZnSe Nanorods. Journal of Physical Chemistry C, 2013, 117, 6006-6012.	3.1	48
17	Subnanometer Thin \hat{I}^2 -Indium Sulfide Nanosheets. Journal of Physical Chemistry Letters, 2012, 3, 3812-3817.	4.6	29
18	Synthesis of Micrometer Length Indium Sulfide Nanosheets and Study of Their Dopant Induced Photoresponse Properties. Chemistry of Materials, 2012, 24, 1779-1785.	6.7	87

SHINJITA ACHARYA

#	Article	IF	CITATIONS
19	Insertion/Ejection of Dopant Ions in Composition Tunable Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 19513-19519.	3.1	29
20	An Alternate Route to High-Quality ZnSe and Mn-Doped ZnSe Nanocrystals. Journal of Physical Chemistry Letters, 2010, $1,485-488$.	4.6	117
21	Prevention of photooxidation in blue–green emitting Cu doped ZnSe nanocrystals. Chemical Communications, 2010, 46, 2853.	4.1	94