
Nia Jane Bryant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1163905/publications.pdf Version: 2024-02-01

NIA JANE ROVANT

#	Article	IF	CITATIONS
1	Knockout of syntaxin-4 in 3T3-L1 adipocytes reveals new insight into GLUT4 trafficking and adiponectin secretion. Journal of Cell Science, 2022, 135, .	2.0	6
2	Large scale, single-cell FRET-based glucose uptake measurements within heterogeneous populations. IScience, 2022, 25, 104023.	4.1	5
3	CHC22 clathrin mediates traffic from early secretory compartments for human GLUT4 pathway biogenesis. Journal of Cell Biology, 2020, 219, .	5.2	32
4	Building GLUT4 Vesicles: CHC22 Clathrin's Human Touch. Trends in Cell Biology, 2020, 30, 705-719.	7.9	28
5	Insulin stimulated GLUT4 translocation – Size is not everything!. Current Opinion in Cell Biology, 2020, 65, 28-34.	5.4	39
6	Characterisation of GLUT4 trafficking in HeLa cells: comparable kinetics and orthologous trafficking mechanisms to 3T3-L1 adipocytes. PeerJ, 2020, 8, e8751.	2.0	16
7	The deubiquitinating enzyme USP25 binds tankyrase and regulates trafficking of the facilitative glucose transporter GLUT4 in adipocytes. Scientific Reports, 2019, 9, 4710.	3.3	16
8	Proximity Ligation Assay to Study the GLUT4 Membrane Trafficking Machinery. Methods in Molecular Biology, 2018, 1713, 217-227.	0.9	2
9	SNARE phosphorylation: a control mechanism for insulin-stimulated glucose transport and other regulated exocytic events. Biochemical Society Transactions, 2017, 45, 1271-1277.	3.4	13
10	16K Fractionation of 3T3-L1 Adipocytes to Produce a Crude GLUT4-Containing Vesicle Fraction. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot083683.	0.3	3
11	Complete Membrane Fractionation of 3T3-L1 Adipocytes. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot083691.	0.3	6
12	Alternate routes to the cell surface underpin insulin-regulated membrane trafficking of GLUT4. Journal of Cell Science, 2015, 128, 2423-9.	2.0	26
13	Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking. Molecular Biology of the Cell, 2015, 26, 530-536.	2.1	22
14	mVps45 knockdown selectively modulates VAMP expression in 3T3-L1 adipocytes. Communicative and Integrative Biology, 2015, 8, e1026494.	1.4	3
15	Studies of the regulated assembly of SNARE complexes in adipocytes. Biochemical Society Transactions, 2014, 42, 1396-1400.	3.4	7
16	Insulin Stimulates Syntaxin4 SNARE Complex Assembly via a Novel Regulatory Mechanism. Molecular and Cellular Biology, 2014, 34, 1271-1279.	2.3	33
17	Homotypic Vacuole Fusion in Yeast Requires Organelle Acidification and Not the V-ATPase Membrane Domain. Developmental Cell, 2013, 27, 462-468.	7.0	52
18	<i>Arabidopsis</i> Sec1/Munc18 Protein SEC11 Is a Competitive and Dynamic Modulator of SNARE Binding and SYP121-Dependent Vesicle Traffic Â. Plant Cell, 2013, 25, 1368-1382.	6.6	66

NIA JANE BRYANT

#	Article	IF	CITATIONS
19	Posttranslational Modifications of GLUT4 Affect Its Subcellular Localization and Translocation. International Journal of Molecular Sciences, 2013, 14, 9963-9978.	4.1	33
20	Endosomal sorting of GLUT4 and Gap1 is conserved between yeast and insulin-sensitive cells. Journal of Cell Science, 2013, 126, 1576-82.	2.0	11
21	Sorting of GLUT4 into its insulin-sensitive store requires the Sec1/Munc18 protein mVps45. Molecular Biology of the Cell, 2013, 24, 2389-2397.	2.1	25
22	The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy. Blood, 2013, 121, 5078-5087.	1.4	70
23	The Sec1/Munc18 Protein Vps45 Regulates Cellular Levels of Its SNARE Binding Partners Tlg2 and Snc2 in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e49628.	2.5	13
24	SNARE Proteins Underpin Insulinâ€Regulated GLUT4 Traffic. Traffic, 2011, 12, 657-664.	2.7	49
25	Tyrosine phosphorylation of Munc18c on residue 521 abrogates binding to Syntaxin 4. BMC Biochemistry, 2011, 12, 19.	4.4	26
26	Autoinhibition of SNARE complex assembly by a conformational switch represents a conserved feature of syntaxins. Biochemical Society Transactions, 2010, 38, 209-212.	3.4	17
27	Insulin-Regulated Trafficking of GLUT4 Requires Ubiquitination. Traffic, 2010, 11, 1445-1454.	2.7	38
28	Functional homology of mammalian syntaxin 16 and yeast Tlg2p reveals a conserved regulatory mechanism. Journal of Cell Science, 2009, 122, 2292-2299.	2.0	25
29	The N-terminal peptide of the syntaxin Tlg2p modulates binding of its closed conformation to Vps45p. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14303-14308.	7.1	50
30	Characterization of two distinct binding modes between syntaxin 4 and Munc18c. Biochemical Journal, 2009, 419, 655-660.	3.7	23
31	A role for the syntaxin N-terminus. Biochemical Journal, 2009, 418, e1-e3.	3.7	17
32	Vps45p—a paradigm for Sec1p/Munc18 protein function. FASEB Journal, 2009, 23, 683.5.	0.5	0
33	Negative Regulation of Syntaxin4/SNAP-23/VAMP2-Mediated Membrane Fusion by Munc18c In Vitro. PLoS ONE, 2008, 3, e4074.	2.5	37
34	Cellular levels of the syntaxin Tlg2p are regulated by a single mode of binding to Vps45p. Biochemical and Biophysical Research Communications, 2007, 363, 857-860.	2.1	7
35	Syntaxin 16 controls the intracellular sequestration of GLUT4 in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 2006, 347, 433-438.	2.1	45
36	Molecular Dissection of the Munc18c/Syntaxin4 Interaction: Implications for Regulation of Membrane Trafficking. Traffic, 2006, 7, 1408-1419.	2.7	106

NIA JANE BRYANT

#	Article	IF	CITATIONS
37	The Sec1p/Munc18 protein Vps45p binds its cognate SNARE proteins via two distinct modes. Journal of Cell Biology, 2006, 173, 927-936.	5.2	96
38	The t-SNARE Syntaxin 4 Is Regulated during Macrophage Activation to Function in Membrane Traffic and Cytokine Secretion. Current Biology, 2003, 13, 156-160.	3.9	109
39	Recombinant expression of Munc18c in a baculovirus system and interaction with syntaxin4. Protein Expression and Purification, 2003, 31, 305-310.	1.3	7
40	GLUT4 Recycles via atrans-Golgi Network (TGN) Subdomain Enriched in Syntaxins 6 and 16 But Not TGN38: Involvement of an Acidic Targeting Motif. Molecular Biology of the Cell, 2003, 14, 973-986.	2.1	192
41	Tomosyn Interacts with the t-SNAREs Syntaxin4 and SNAP23 and Plays a Role in Insulin-stimulated GLUT4 Translocation. Journal of Biological Chemistry, 2003, 278, 35093-35101.	3.4	79
42	The Sec1p/Munc18 (SM) protein, Vps45p, cycles on and off membranes during vesicle transport. Journal of Cell Biology, 2003, 161, 691-696.	5.2	39
43	Regulated transport of the glucose transporter GLUT4. Nature Reviews Molecular Cell Biology, 2002, 3, 267-277.	37.0	1,008
44	Syntaxin 7 Complexes with Mouse Vps10p Tail Interactor 1b, Syntaxin 6, Vesicle-associated Membrane Protein (VAMP)8, and VAMP7 in B16 Melanoma Cells. Journal of Biological Chemistry, 2001, 276, 19820-19827.	3.4	79
45	<i>VPS21</i> Controls Entry of Endocytosed and Biosynthetic Proteins into the Yeast Prevacuolar Compartment. Molecular Biology of the Cell, 2000, 11, 613-626.	2.1	99
46	Traffic into the prevacuolar/endosomal compartment of Saccharomyces cerevisiae: A VPS45-dependent intracellular route and a VPS45-independent, endocytic route. European Journal of Cell Biology, 1998, 76, 43-52.	3.6	60
47	Retrograde Traffic Out of the Yeast Vacuole to the TGN Occurs via the Prevacuolar/Endosomal Compartment. Journal of Cell Biology, 1998, 142, 651-663.	5.2	111
48	Vacuole Biogenesis in <i>Saccharomyces cerevisiae</i> : Protein Transport Pathways to the Yeast Vacuole. Microbiology and Molecular Biology Reviews, 1998, 62, 230-247.	6.6	255
49	Two Separate Signals Act Independently to Localize a Yeast Late Golgi Membrane Protein through a Combination of Retrieval and Retention. Journal of Cell Biology, 1997, 136, 287-297.	5.2	97
50	The Membrane Protein Alkaline Phosphatase Is Delivered to the Vacuole by a Route That Is Distinct from the VPS-dependent Pathway. Journal of Cell Biology, 1997, 138, 531-545.	5.2	149
51	Localization of a protein a-tagged kex2 protein to the vacuole ofSaccharomyces cerevisiae allows rapid purification of vacuolar membranes. Yeast, 1995, 11, 201-210.	1.7	9