
Quentin A Pankhurst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1163889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applications of magnetic nanoparticles in biomedicine. Journal Physics D: Applied Physics, 2003, 36, R167-R181.	2.8	5,148
2	Progress in applications of magnetic nanoparticles in biomedicine. Journal Physics D: Applied Physics, 2009, 42, 224001.	2.8	1,246
3	Suitability of commercial colloids for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2009, 321, 1509-1513.	2.3	397
4	On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. Journal Physics D: Applied Physics, 2014, 47, 495003.	2.8	288
5	High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale, 2015, 7, 1768-1775.	5.6	209
6	Magnetic Tagging Increases Delivery of Circulating Progenitors in Vascular Injury. JACC: Cardiovascular Interventions, 2009, 2, 794-802.	2.9	124
7	Increased Levels of Magnetic Iron Compounds in Alzheimer's Disease. Journal of Alzheimer's Disease, 2008, 13, 49-52.	2.6	123
8	Elucidating the morphological and structural evolution of iron oxide nanoparticles formed by sodium carbonate in aqueous medium. Journal of Materials Chemistry, 2012, 22, 12498.	6.7	93
9	Size and Concentration Effects on High Frequency Hysteresis of Iron Oxide Nanoparticles. IEEE Transactions on Magnetics, 2007, 43, 2451-2453.	2.1	87
10	On the â€~centre of gravity' method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via ⁵⁷ Fe Mössbauer spectroscopy. Journal Physics D: Applied Physics, 2017, 50, 265005.	2.8	75
11	Fine-particle magnetic oxides. Journal of Physics Condensed Matter, 1993, 5, 8487-8508.	1.8	73
12	Structural and Magnetic Properties of Ferrihydrite. Clays and Clay Minerals, 1992, 40, 268-272.	1.3	70
13	Magnetic Nanoparticles for in Vivo Use: A Critical Assessment of Their Composition. Journal of Physical Chemistry B, 2014, 118, 11738-11746.	2.6	59
14	Standardisation of magnetic nanoparticles in liquid suspension. Journal Physics D: Applied Physics, 2017, 50, 383003.	2.8	56
15	Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 2016, 11, 1973.	6.7	53
16	Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models. International Journal of Hyperthermia, 2018, 34, 671-686.	2.5	41
17	On the nature of iron species in iron substituted aluminophosphates. Physical Chemistry Chemical Physics, 2002, 4, 5421-5429.	2.8	36
18	Microstructural aspects of the self-propagating high temperature synthesis of hexagonal barium ferrites in an external magnetic field. Journal of Materials Chemistry, 2000, 10, 1925-1932.	6.7	33

QUENTIN A PANKHURST

#	Article	IF	CITATIONS
19	Challenges and recommendations for magnetic hyperthermia characterization measurements. International Journal of Hyperthermia, 2021, 38, 447-460.	2.5	33
20	Self-propagating high-temperature synthesis of chromium substituted lanthanum orthoferrites LaFe1 Ⱂ xCrxO3 (0 ≤ ≤). Journal of Materials Chemistry, 2001, 11, 854-858.	6.7	31
21	Corrigendum to "Suitability of commercial colloids for magnetic hyperthermia―[J. Magn. Magn. Mater. 321 (2009) 1509–1513]. Journal of Magnetism and Magnetic Materials, 2009, 321, 3650-3651.	2.3	26
22	Superparamagnetic particles in ZSM-5–type ferrisilicates. Journal of Materials Research, 1997, 12, 1519-1529.	2.6	25
23	A convenient method for measuring ferric iron in magnesiowustite (MgO-Fe (sub 1-x) O). American Mineralogist, 1998, 83, 794-798.	1.9	25
24	The effect of large magnetic fields on solid state combustion reactions: novel microstructure, lattice contraction and reduced coercivity in barium hexaferrite. Journal of Materials Chemistry, 2000, 10, 235-237.	6.7	24
25	Combustion Synthesis of BaFe12O19 in an External Magnetic Field: Time-Resolved X-ray Diffraction (TRXRD) Studies. Advanced Materials, 2000, 12, 1359-1362.	21.0	23
26	Magnetic hyperthermia controlled drug release in the GI tract: solving the problem of detection. Scientific Reports, 2016, 6, 34271.	3.3	23
27	Investigation of the ternary phase diagram of mechanically alloyed FeCuAg. Journal of Physics Condensed Matter, 1997, 9, 3259-3276.	1.8	22
28	Self-propagating high temperature synthesis of BaFe12O19, Mg0.5Zn0.5Fe2O4 and Li0.5Fe2.5O4; time resolved X-ray diffraction studies (TRXRD). Journal of Materials Chemistry, 2001, 11, 193-199.	6.7	22
29	Self propagating high temperature synthesis of magnesium zinc ferrites (MgxZn1 â^' xFe2O3): thermal imaging and time resolved X-ray diffraction experiments. Journal of Materials Chemistry, 2004, 14, 1104-1111.	6.7	21
30	Mössbauer spectroscopic and magnetic studies of magnetoferritin. Hyperfine Interactions, 1994, 91, 847-851.	0.5	20
31	Self-propagating high temperature synthesis of yttrium iron chromium garnets Y3Fe5 â~' xCrxO12 (0 ≤) Tj ET	Qq1 1 0.7	784314 rgBT 20
32	Environmental oxidative aging of iron oxide nanoparticles. Applied Physics Letters, 2018, 113, .	3.3	19
33	A structural study of haematite samples prepared from sulfated goethite precursors: the generation of axial mesoporous voids. Journal of Materials Chemistry, 2000, 10, 761-766.	6.7	17
34	Moment canting in 3d-based amorphous ferromagnets. Journal of Physics Condensed Matter, 1993, 5, 3275-3288.	1.8	16
35	Moment canting and structural anisotropy in amorphous alloys: experiments using synchrotron Mössbauer radiation. Journal of Non-Crystalline Solids, 2001, 287, 81-87.	3.1	15
36	Surface radio-mineralisation mediates chelate-free radiolabelling of iron oxide nanoparticles. Chemical Science, 2019, 10, 2592-2597.	7.4	15

QUENTIN A PANKHURST

#	Article	IF	CITATIONS
37	Deep-tissue localization of magnetic field hyperthermia using pulse sequencing. International Journal of Hyperthermia, 2021, 38, 743-754.	2.5	15
38	The magnetism of fine particle iron oxides and oxyhydroxides in applied fields. Hyperfine Interactions, 1994, 90, 201-214.	0.5	14
39	Radiobiological Implications of Nanoparticles Following Radiation Treatment. Particle and Particle Systems Characterization, 2020, 37, 1900411.	2.3	14
40	Uncertainty budget for determinations of mean isomer shift from Mössbauer spectra. Hyperfine Interactions, 2016, 237, 1.	0.5	12
41	Neutron spin echo evidence of mesoscopic spin correlations among Fe(Cu) ferromagnetic nanoparticles in a silver diamagnetic matrix. Physical Review B, 2007, 76, .	3.2	11
42	Moment canting in amorphous FeSiB ribbons in applied fields: unpolarized Mossbauer effect studies. Journal of Physics Condensed Matter, 1995, 7, 9571-9593.	1.8	9
43	Magnetic Oculomotor Prosthetics for Acquired Nystagmus. Ophthalmology, 2017, 124, 1556-1564.	5.2	9
44	Prenormative verification and validation of a protocol for measuring magnetite–maghemite ratios in magnetic nanoparticles. Metrologia, 2022, 59, 015001.	1.2	8
45	Development of an in-line magnetometer for flow chemistry and its demonstration for magnetic nanoparticle synthesis. Lab on A Chip, 2021, 21, 3775-3783.	6.0	7
46	Applied field Mössbauer studies of the iron storage proteins ferritin and haemosiderin. Hyperfine Interactions, 1994, 91, 821-826.	0.5	6
47	Magnetic structure of ludlamite, Fe3(PO4)2·4H2O. Hyperfine Interactions, 1990, 54, 651-653.	0.5	5
48	Studies of oxides related to high temperature superconductors. Hyperfine Interactions, 1990, 55, 1387-1391.	0.5	5
49	Inorganic—Protein Interactions in the Synthesis of a Ferrimagnetic Nanocomposite. ACS Symposium Series, 1995, , 19-28.	0.5	5
50	Structural and magnetic anisotropy in amorphous alloy ribbons. Journal of Physics Condensed Matter, 1997, 9, L375-L383.	1.8	5
51	Thermal Treatment of Iron-Copper Metastable Alloys. Magyar Apróvad Közlemények, 1999, 56, 239-245.	1.4	5
52	Novel SHS routes to CoTi-doped M-type ferrites. Journal of Materials Science: Materials in Electronics, 2001, 12, 533-536.	2.2	5
53	Biomedical applications of high gradient magnetic separation: progress towards therapeutic haeomofiltration. Biomedizinische Technik, 2015, 60, 393-404.	0.8	5
54	The effect of misalignment on the spin-flop transition in K2FeF5. Hyperfine Interactions, 1988, 41, 505-508.	0.5	4

QUENTIN A PANKHURST

#	Article	IF	CITATIONS
55	A double-Gaussian approach to the moment distribution in amorphous metals. Hyperfine Interactions, 1994, 94, 2137-2143.	0.5	4
56	Using the â€~dispersion-retention-formulation method' to estimate clinical and preclinical dosage limits for interstitial nanomedicines or agents. Journal of Magnetism and Magnetic Materials, 2019, 473, 74-78.	2.3	4
57	Magnetic defect structure of iron-rich Fe x O. Hyperfine Interactions, 1994, 94, 1989-1993.	0.5	3
58	Iron-containing materials FeM (M = B, Cr, Ti or VN) prepared by self-propagating high-temperature synthesis. Mendeleev Communications, 2002, 12, 25-26.	1.6	3
59	The magnetic structure of Fe 78 Si 9 B 13 commercial metallic glasses. Europhysics Letters, 2004, 68, 582-588.	2.0	3
60	A Mössbauer study of the magnetism of the alloy series FeAl1â^'xCux (0 <xâ‰0.4). Hyperfine Interactions, 1990, 54, 817-820.</xâ‰	0.5	2
61	Preparation of FeMnB Alloys by Chemical Reduction. Journal of Materials Science Letters, 1999, 18, 39-40.	0.5	2
62	Exchange-Driven Magnetic Anomalies in Fe–Zr–B-Based Nanocomposites. Hyperfine Interactions, 2002, 144/145, 223-230.	0.5	1
63	Synthesis of Amorphous Fe-Zr-B by Chemical Reduction. Journal of Materials Science Letters, 1999, 18, 425-426.	0.5	Ο
64	Chemical Reactions in Applied Magnetic Fields. , 0, , 467-481.		0

Chemical Reactions in Applied Magnetic Fields. , 0, , 467-481. 64