Anders Strom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11638216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estrogen Receptors: How Do They Signal and What Are Their Targets. Physiological Reviews, 2007, 87, 905-931.	28.8	1,489
2	Estrogen receptor β inhibits 17β-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1566-1571.	7.1	500
3	Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biology, 2004, 5, R66.	9.6	257
4	Estrogen Receptor Î ² Inhibits Angiogenesis and Growth of T47D Breast Cancer Xenografts. Cancer Research, 2006, 66, 11207-11213.	0.9	193
5	Tumor Repressive Functions of Estrogen Receptor Î ² in SW480 Colon Cancer Cells. Cancer Research, 2009, 69, 6100-6106.	0.9	180
6	Estrogen Receptor (ER) β Modulates ERα-Mediated Transcriptional Activation by Altering the Recruitment of c-Fos and c-Jun to Estrogen-Responsive Promoters. Molecular Endocrinology, 2006, 20, 534-543.	3.7	168
7	Estrogen Receptor β2 Negatively Regulates the Transactivation of Estrogen Receptor α in Human Breast Cancer Cells. Cancer Research, 2007, 67, 3955-3962.	0.9	133
8	Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment. Cancer Discovery, 2020, 10, 608-625.	9.4	119
9	Dragon ERE Finder version 2: a tool for accurate detection and analysis of estrogen response elements in vertebrate genomes. Nucleic Acids Research, 2003, 31, 3605-3607.	14.5	113
10	Estrogen Receptor Î ² mRNA in Colon Cancer Cells: Growth Effects of Estrogen and Genistein. Biochemical and Biophysical Research Communications, 2000, 270, 425-431.	2.1	111
11	Estrogen receptor beta in breast cancer—Diagnostic and therapeutic implications. Steroids, 2009, 74, 635-641.	1.8	108
12	Influence of Cellular ERα/ERβ Ratio on the ERα-Agonist Induced Proliferation of Human T47D Breast Cancer Cells. Toxicological Sciences, 2008, 105, 303-311.	3.1	105
13	Estrogen Receptors β1 and β2 Have Opposing Roles in Regulating Proliferation and Bone Metastasis Genes in the Prostate Cancer Cell Line PC3. Molecular Endocrinology, 2012, 26, 1991-2003.	3.7	99
14	Estrogen Receptor Î ² Induces Antiinflammatory and Antitumorigenic Networks in Colon Cancer Cells. Molecular Endocrinology, 2011, 25, 969-979.	3.7	98
15	The genome landscape of ERα- and ERβ-binding DNA regions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2604-2609.	7.1	95
16	Inhibitory effects of estrogen receptor beta on specific hormone-responsive gene expression and association with disease outcome in primary breast cancer. Breast Cancer Research, 2007, 9, R25.	5.0	91
17	Insight into the mechanisms of action of estrogen receptor β in the breast, prostate, colon, and CNS. Journal of Molecular Endocrinology, 2013, 51, T61-T74.	2.5	91
18	HES-1 inhibits 17β-estradiol and heregulin-β1-mediated upregulation of E2F-1. Oncogene, 2004, 23, 8826-8833.	5.9	56

ANDERS STROM

#	Article	IF	CITATIONS
19	Expression of estrogen receptor β increases integrin α1 and integrin β1 levels and enhances adhesion of breast cancer cells. Journal of Cellular Physiology, 2010, 222, 156-167.	4.1	56
20	HES-1, a Novel Target Gene for the Aryl Hydrocarbon Receptor. Molecular Pharmacology, 2004, 65, 165-171.	2.3	55
21	Current concepts and significance of estrogen receptor Î ² in prostate cancer. Steroids, 2012, 77, 1262-1266.	1.8	54
22	Characterization of the Proximal Promoter and Two Silencer Elements in theCYP2C11Gene Expressed in Rat Liver. DNA and Cell Biology, 1994, 13, 805-819.	1.9	43
23	The Hairy and Enhancer of Split homologue-1 (HES-1) mediates the proliferative effect of 17β-estradiol on breast cancer cell lines. Oncogene, 2000, 19, 5951-5953.	5.9	42
24	Estrogen receptor beta decreases survival of p53-defective cancer cells after DNA damage by impairing G2/M checkpoint signaling. Breast Cancer Research and Treatment, 2011, 127, 417-427.	2.5	42
25	The Anti-estrogenic Effect of All-trans-retinoic Acid on the Breast Cancer Cell Line MCF-7 Is Dependent on HES-1 Expression. Journal of Biological Chemistry, 2002, 277, 28376-28379.	3.4	40
26	Quantitative Proteomics and Transcriptomics Addressing the Estrogen Receptor Subtype-mediated Effects in T47D Breast Cancer Cells Exposed to the Phytoestrogen Genistein. Molecular and Cellular Proteomics, 2011, 10, M110.002170.	3.8	40
27	SOX9 mediates the retinoic acid-induced HES-1 gene expression in human breast cancer cells. Breast Cancer Research and Treatment, 2010, 120, 317-326.	2.5	38
28	Growth hormone regulation of hepatic cytochrome P450 expression in the rat. Advances in Enzyme Regulation, 1992, 32, 255-263.	2.6	37
29	Update on ERbeta. Journal of Steroid Biochemistry and Molecular Biology, 2019, 191, 105312.	2.5	34
30	Lapatinib induces p27 ^{Kip1} -dependent Gâ,•arrest through both transcriptional and post-translational mechanisms. Cell Cycle, 2013, 12, 2665-2674.	2.6	31
31	Breast Cancer Cell Proliferation Is Inhibited by BAD. Journal of Biological Chemistry, 2007, 282, 28864-28873.	3.4	30
32	Hes-6, an inhibitor of Hes-1, is regulated by 17β-estradiol and promotes breast cancer cell proliferation. Breast Cancer Research, 2009, 11, R79.	5.0	27
33	The Ah receptor inhibits estrogen-induced estrogen receptor Î ² in breast cancer cells. Biochemical and Biophysical Research Communications, 2004, 320, 76-82.	2.1	25
34	BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion. Experimental Cell Research, 2015, 331, 1-10.	2.6	25
35	Structural and Regulatory Analysis of a Cytochrome P450 Gene (CYP2C12) Expressed Predominantly in Female Rat Liver. DNA and Cell Biology, 1990, 9, 49-56.	1.9	24
36	Structural and Regulatory Analysis of the Male-Specific Rat Liver Cytochrome P-450 g: Repression by Continuous Growth Hormone Administration Molecular Endocrinology, 1990, 4, 53-58.	3.7	22

ANDERS STROM

#	Article	IF	CITATIONS
37	The role and mechanism of growth hormone in the regulation of sexually dimorphic P450 enzymes in rat liver. Journal of Steroid Biochemistry and Molecular Biology, 1992, 43, 1045-1053.	2.5	21
38	The estrogen receptor variants \hat{l}^22 and \hat{l}^25 induce stem cell characteristics and chemotherapy resistance in prostate cancer through activation of hypoxic signaling. Oncotarget, 2018, 9, 36273-36288.	1.8	18
39	Cloning and pretranslational hormonal regulation of testosterone 16α-hydroxylase (P-45016α) in male rat liver. European Journal of Endocrinology, 1988, 118, 314-320.	3.7	15
40	Estrogen-dependent downregulation of hairy and enhancer of split homolog-1 gene expression in breast cancer cells is mediated via a 3′ distal element. Journal of Endocrinology, 2009, 200, 311-319.	2.6	7
41	A Screening Cascade to Identify ERÎ ² Ligands. Nuclear Receptor Signaling, 2014, 12, nrs.12003.	1.0	7
42	Pretranslational hormonal control of male-specific cytochrome P-45016α in rat liver. Biochemical Society Transactions, 1987, 15, 575-576.	3.4	6
43	Sequence and Regulation of Two Growthâ€hormoneâ€contn Sexâ€specific Isozymes of Cytochrome Pâ€450 in Rat Liver, Pâ€450 _{15β} and Pâ€450 _{16α} . Acta Medica Scandinavica, 1987, 222, 161-167 	0.0	2
44	Abstract 1046: BAD is a multifunctional protein in breast cancer cells. , 2010, , .		1