
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11637771/publications.pdf Version: 2024-02-01

FDIR I HENDIRGEN

#	Article	IF	CITATIONS
1	Selective Glycogen Synthase Kinase 3 Inhibitors Potentiate Insulin Activation of Glucose Transport and Utilization In Vitro and In Vivo. Diabetes, 2003, 52, 588-595.	0.6	467
2	Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radical Biology and Medicine, 2011, 51, 993-999.	2.9	463
3	Invited Review: Effects of acute exercise and exercise training on insulin resistance. Journal of Applied Physiology, 2002, 93, 788-796.	2.5	427
4	Selective Angiotensin II Receptor Antagonism Reduces Insulin Resistance in Obese Zucker Rats. Hypertension, 2001, 38, 884-890.	2.7	282
5	The metabolic syndrome: Role of skeletal muscle metabolism. Annals of Medicine, 2006, 38, 389-402.	3.8	261
6	Antihypertensive therapy and insulin sensitivity: Do we have to redefine the role of β-blocking agents?. American Journal of Hypertension, 1998, 11, 1258-1265.	2.0	171
7	Role of Glycogen Synthase Kinase-3 in Insulin Resistance and Type 2 Diabetes. Current Drug Targets, 2006, 7, 1435-1441.	2.1	159
8	Effects of captopril on glucose transport activity in skeletal muscle of obese Zucker rats. Metabolism: Clinical and Experimental, 1995, 44, 267-272.	3.4	129
9	Exercise training and the antioxidant α-lipoic acid in the treatment of insulin resistance and type 2 diabetes. Free Radical Biology and Medicine, 2006, 40, 3-12.	2.9	123
10	Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition. Journal of Cellular Physiology, 2003, 196, 171-179.	4.1	115
11	Improvement of insulin sensitivity by antagonism of the renin-angiotensin system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R974-R980.	1.8	115
12	Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle: Role of p38 MAPK. Free Radical Biology and Medicine, 2009, 47, 1486-1493.	2.9	104
13	Stimulation by α-Lipoic acid of glucose transport activity in skeletal muscle of lean and obese zucker rats. Life Sciences, 1997, 61, 805-812.	4.3	100
14	Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E892-E900.	3.5	94
15	Oxidative stress-induced insulin resistance in rat skeletal muscle: role of glycogen synthase kinase-3. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E615-E621.	3.5	91
16	Acute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E1188-E1194.	3.5	88
17	Interactions of exercise training and α-lipoic acid on insulin signaling in skeletal muscle of obese Zucker rats. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E529-E536.	3.5	78
18	Isomer-specific actions of conjugated linoleic acid on muscle glucose transport in the obese Zucker rat. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E98-E105.	3.5	74

#	Article	IF	CITATIONS
19	The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle. Molecular and Cellular Endocrinology, 2013, 378, 15-22.	3.2	70
20	Effects of trandolapril and verapamil on glucose transport in insulin-resistant rat skeletal muscle. Metabolism: Clinical and Experimental, 1996, 45, 535-541.	3.4	67
21	Oxidant stress and skeletal muscle glucose transport: Roles of insulin signaling and p38 MAPK. Free Radical Biology and Medicine, 2006, 41, 818-824.	2.9	62
22	Dysregulation of Glycogen Synthase Kinase-3 in Skeletal Muscle and the Etiology of Insulin Resistance and Type 2 Diabetes. Current Diabetes Reviews, 2010, 6, 285-293.	1.3	60
23	ACE inhibition and glucose transport in insulinresistant muscle: roles of bradykinin and nitric oxide. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R332-R336.	1.8	59
24	Interactions of exercise training and lipoic acid on skeletal muscle glucose transport in obese Zucker rats. Journal of Applied Physiology, 2001, 91, 145-153.	2.5	58
25	Review: Angiotensin-converting enzyme in skeletal muscle: sentinel of blood pressure control and glucose homeostasis. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2008, 9, 75-88.	1.7	51
26	Interactions of captopril and verapamil on glucose tolerance and insulin action in an animal model of insulin resistance. Metabolism: Clinical and Experimental, 1998, 47, 982-987.	3.4	50
27	Interactions of the advanced glycation end product inhibitor pyridoxamine and the antioxidant α-lipoic acid on insulin resistance in the obese Zucker rat. Metabolism: Clinical and Experimental, 2008, 57, 1465-1472.	3.4	50
28	ANG-(1–7) reduces ANG II-induced insulin resistance by enhancing Akt phosphorylation via a Mas receptor-dependent mechanism in rat skeletal muscle. Biochemical and Biophysical Research Communications, 2012, 426, 369-373.	2.1	50
29	Defective insulin signaling in skeletal muscle of the hypertensive TG(mREN2)27 rat. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E1074-E1081.	3.5	48
30	Interactions of exercise training and ACE inhibition on insulin action in obese Zucker rats. Journal of Applied Physiology, 1999, 86, 2044-2051.	2.5	47
31	Direct inhibition by angiotensin II of insulin-dependent glucose transport activity in mammalian skeletal muscle involves a ROS-dependent mechanism. Archives of Physiology and Biochemistry, 2010, 116, 88-95.	2.1	39
32	Selective angiotensin II receptor antagonism enhances whole-body insulin sensitivity and muscle glucose transport in hypertensive TG(mREN2)27 rats. Metabolism: Clinical and Experimental, 2005, 54, 1659-1668.	3.4	38
33	Critical role of the transient activation of p38 MAPK in the etiology of skeletal muscle insulin resistance induced by low-level in vitro oxidant stress. Biochemical and Biophysical Research Communications, 2011, 405, 439-444.	2.1	37
34	Effect of chronic bradykinin administration on insulin action in an animal model of insulin resistance. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R40-R45.	1.8	36
35	Chronic selective glycogen synthase kinase-3 inhibition enhances glucose disposal and muscle insulin action in prediabetic obese Zucker rats. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E207-E213.	3.5	36
36	Selected Contribution: Modulation of insulin resistance and hypertension by voluntary exercise training in the TG(mREN2)27 rat. Journal of Applied Physiology, 2002, 93, 805-812.	2.5	35

#	Article	IF	CITATIONS
37	Development of whole-body and skeletal muscle insulin resistance after one day of hindlimb suspension. Metabolism: Clinical and Experimental, 2004, 53, 1215-1222.	3.4	35
38	Effects of exercise training and antioxidant R-ALA on glucose transport in insulin-sensitive rat skeletal muscle. Journal of Applied Physiology, 2002, 92, 50-58.	2.5	28
39	Roles of insulin signalling and p38 MAPK in the activation by lithium of glucose transport in insulin-resistant rat skeletal muscle. Archives of Physiology and Biochemistry, 2008, 114, 331-339.	2.1	26
40	Effects of H2O2 on Insulin Signaling the Glucose Transport System in Mammalian Skeletal Muscle. Methods in Enzymology, 2013, 528, 269-278.	1.0	26
41	Short-term in vitro inhibition of glycogen synthase kinase 3 potentiates insulin signaling in type I skeletal muscle of Zucker Diabetic Fatty rats. Metabolism: Clinical and Experimental, 2007, 56, 931-938.	3.4	25
42	Chronic renin inhibition with aliskiren improves glucose tolerance, insulin sensitivity, and skeletal muscle glucose transport activity in obese Zucker rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R137-R142.	1.8	25
43	Interactions of conjugated linoleic acid and lipoic acid on insulin action in the obese Zucker rat. Metabolism: Clinical and Experimental, 2003, 52, 1167-1174.	3.4	24
44	Effects of a unique conjugate of α-lipoic acid and γ-linolenic acid on insulin action in obese Zucker rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R453-R459.	1.8	23
45	Effects of exercise training and ACE inhibition on insulin action in rat skeletal muscle. Journal of Applied Physiology, 2000, 89, 687-694.	2.5	23
46	Exercise Training and Antioxidants: Relief from Oxidative Stress and Insulin Resistance. Exercise and Sport Sciences Reviews, 2003, 31, 79-84.	3.0	23
47	Antihypertensive Agent Moxonidine Enhances Muscle Glucose Transport in Insulin-Resistant Rats. Hypertension, 1997, 30, 1560-1565.	2.7	22
48	Metabolic Properties of Vasodilating β Blockers: Management Considerations for Hypertensive Diabetic Patients and Patients With the Metabolic Syndrome. Journal of Clinical Hypertension, 2004, 6, 690-696.	2.0	20
49	Essential role of p38 MAPK for activation of skeletal muscle glucose transport by lithium. Archives of Physiology and Biochemistry, 2007, 113, 221-227.	2.1	20
50	Attenuation of oxidant-induced muscle insulin resistance and p38 MAPK by exercise training. Free Radical Biology and Medicine, 2009, 47, 593-599.	2.9	20
51	Enhanced insulin action on glucose transport and insulin signaling in 7-day unweighted rat soleus muscle. Journal of Applied Physiology, 2004, 97, 63-71.	2.5	18
52	The Novel Angiotensin II Receptor Blocker Azilsartan Medoxomil Ameliorates Insulin Resistance Induced by Chronic Angiotensin II Treatment in Rat Skeletal Muscle. CardioRenal Medicine, 2013, 3, 154-164.	1.9	17
53	Alterations in soleus muscle gene expression associated with a metabolic endpoint following exercise training by lean and obese Zucker rats. Physiological Genomics, 2007, 29, 302-311.	2.3	15
54	Metabolic interactions of AGE inhibitor pyridoxamine and antioxidant α-lipoic acid following 22Âweeks of treatment in obese Zucker rats. Life Sciences, 2009, 84, 563-568.	4.3	15

#	Article	IF	CITATIONS
55	Contribution of the serine kinase c-Jun N-terminal kinase (JNK) to oxidant-induced insulin resistance in isolated rat skeletal muscle. Archives of Physiology and Biochemistry, 2012, 118, 231-236.	2.1	14
56	The high-fat-fed lean Zucker rat: a spontaneous isocaloric model of fat-induced insulin resistance associated with muscle GSK-3 overactivity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1813-R1821.	1.8	13
57	The β2-Adrenergic modulator celiprolol reduces insulin resistance in obese zucker rats. Life Sciences, 1999, 64, 2071-2079.	4.3	11
58	Role of Oxidative Stress in the Pathogenesis of Insulin Resistance and Type 2 Diabetes. , 2019, , 3-17.		10
59	Voluntary exercise training enhances glucose transport but not insulin signaling capacity in muscle of hypertensive TG(mREN2)27 rats. Journal of Applied Physiology, 2005, 99, 357-362.	2.5	9
60	The lipid peroxidation end-product and oxidant 4-hydroxynonenal induces insulin resistance in rat slow-twitch skeletal muscle. Archives of Physiology and Biochemistry, 2014, 120, 22-28.	2.1	9
61	The Physiology undergraduate major in the University of Arizona College of Medicine: past, present, and future. American Journal of Physiology - Advances in Physiology Education, 2011, 35, 103-109.	1.6	7
62	Undergraduate Physiology Degree Programs in the United States: from Famine to Feast. Physiology, 2015, 30, 254-255.	3.1	4
63	A Radical Concept on Caveolae and Endothelial Dysfunction in Coronary Microvascular Disease in Diabetes. Diabetes, 2014, 63, 1200-1202.	0.6	3
64	Upregulation of Protein Kinase Câ€Î¶ Gene and Protein Expression by Exercise Training in Muscle of Obese Zucker Rats: Correlation with Enhanced Glucose Tolerance. FASEB Journal, 2007, 21, A576.	0.5	0
65	Chronic endocannabinoid receptorâ€1 antagonism improves metabolic parameters beyond those associated with reduced caloric intabe in obese Zucker rats. FASFB Journal, 2010, 24, 783,8	0.5	0