Michael Rosenblum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11636523/publications.pdf

Version: 2024-02-01

28 papers 2,145 citations

16 h-index 25 g-index

30 all docs

30 docs citations

times ranked

30

2365 citing authors

#	Article	IF	CITATIONS
1	Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet, The, 2019, 393, 1021-1032.	13.7	534
2	Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet, The, 2017, 389, 603-611.	13.7	364
3	Diaphragm and lubricant gel for prevention of HIV acquisition in southern African women: a randomised controlled trial. Lancet, The, 2007, 370, 251-261.	13.7	302
4	Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. Lancet Neurology, The, 2016, 15, 1228-1237.	10.2	292
5	The Risk of Virologic Failure Decreases with Duration of HIV Suppression, at Greater than 50% Adherence to Antiretroviral Therapy. PLoS ONE, 2009, 4, e7196.	2.5	104
6	Surgical Performance Determines Functional Outcome Benefit in the Minimally Invasive Surgery Plus Recombinant Tissue Plasminogen Activator for Intracerebral Hemorrhage Evacuation (MISTIE) Procedure. Neurosurgery, 2019, 84, 1157-1168.	1.1	93
7	Leveraging prognostic baseline variables to gain precision in randomized trials. Statistics in Medicine, 2015, 34, 2602-2617.	1.6	59
8	Using Regression Models to Analyze Randomized Trials: Asymptotically Valid Hypothesis Tests Despite Incorrectly Specified Models. Biometrics, 2009, 65, 937-945.	1.4	50
9	Targeted Maximum Likelihood Estimation of the Parameter of a Marginal Structural Model. International Journal of Biostatistics, 2010, 6, Article 19.	0.7	47
10	Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables. International Journal of Biostatistics, 2010, 6, Article 13.	0.7	43
11	Analysis of Covariance in Randomized Trials: More Precision and Valid Confidence Intervals, Without Model Assumptions. Biometrics, 2019, 75, 1391-1400.	1.4	41
12	Unmet Needs and Challenges in Clinical Research of Intracerebral Hemorrhage. Stroke, 2018, 49, 1299-1307.	2.0	39
13	Improving precision and power in randomized trials for COVIDâ€19 treatments using covariate adjustment, for binary, ordinal, and timeâ€toâ€event outcomes. Biometrics, 2021, 77, 1467-1481.	1.4	37
14	Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards. Lifetime Data Analysis, 2019, 25, 439-468.	0.9	28
15	Analysing direct effects in randomized trials with secondary interventions: an application to human immunodeficiency virus prevention trials. Journal of the Royal Statistical Society Series A: Statistics in Society, 2009, 172, 443-465.	1.1	24
16	Optimal Tests of Treatment Effects for the Overall Population and Two Subpopulations in Randomized Trials, Using Sparse Linear Programming. Journal of the American Statistical Association, 2014, 109, 1216-1228.	3.1	23
17	Improving precision by adjusting for prognostic baseline variables in randomized trials with binary outcomes, without regression modelÂassumptions. Contemporary Clinical Trials, 2017, 54, 18-24.	1.8	22
18	Adaptive Enrichment Designs for Stroke Clinical Trials. Stroke, 2017, 48, 2021-2025.	2.0	12

#	Article	IF	CITATIONS
19	Inequality in treatment benefits: Can we determine if a new treatment benefits the many or the few?. Biostatistics, 2016, 18, kxw049.	1.5	8
20	Optimal, Two-Stage, Adaptive Enrichment Designs for Randomized Trials, using Sparse Linear Programming. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2020, 82, 749-772.	2.2	8
21	Constructing a Confidence Interval for the Fraction Who Benefit from Treatment, Using Randomized Trial Data. Biometrics, 2019, 75, 1228-1239.	1.4	4
22	Uniformly most powerful tests for simultaneously detecting a treatment effect in the overall population and at least one subpopulation. Journal of Statistical Planning and Inference, 2014, 155, 107-116.	0.6	3
23	The Impact of Secondary Condom Interventions on the Interpretation of Results from HIV Prevention Trials. Statistical Communications in Infectious Diseases, 2010, 2, .	0.2	1
24	Genomic and clinical predictors for improving estimator precision in randomized trials of breast cancer treatments. Contemporary Clinical Trials Communications, 2016, 3, 48-54.	1.1	1
25	Sensitivity of adaptive enrichment trial designs to accrual rates, time to outcome measurement, and prognostic variables. Contemporary Clinical Trials Communications, 2017, 8, 39-48.	1.1	1
26	Rejoinder: Improving precision and power in randomized trials for COVIDâ€19 treatments using covariate adjustment, for binary, ordinal, and timeâ€toâ€event outcomes. Biometrics, 2021, 77, 1492-1494.	1.4	1
27	Rejoinder to "A Note on Using Regression Models to Analyze Randomized Trials: Asymptotically Valid Hypothesis Tests Despite Incorrectly Specified Models― Biometrics, 2013, 69, 290-290.	1.4	0
28	Rejoinder to "Robustness of ANCOVA in randomized trials with unequal randomization―by Jonathan W. Bartlett. Biometrics, 2020, 76, 1039-1039.	1.4	0