Subhabrata Majumder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11636225/publications.pdf

Version: 2024-02-01

840776 940533 14 681 11 16 citations h-index g-index papers 19 19 19 677 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In Vivo Activation of the p53 Tumor Suppressor Pathway by an Engineered Cyclotide. Journal of the American Chemical Society, 2013, 135, 11623-11633.	13.7	208
2	Design of a Novel Cyclotide-Based CXCR4 Antagonist with Anti-Human Immunodeficiency Virus (HIV)-1 Activity. Journal of Medicinal Chemistry, 2012, 55, 10729-10734.	6.4	117
3	Probing Protein Quinary Interactions by In-Cell Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2015, 54, 2727-2738.	2.5	75
4	Expression of Fluorescent Cyclotides using Protein Transâ€Splicing for Easy Monitoring of Cyclotide–Protein Interactions. Angewandte Chemie - International Edition, 2013, 52, 3126-3131.	13.8	53
5	Recombinant Expression and Phenotypic Screening of a Bioactive Cyclotide Against αâ€Synucleinâ€Induced Cytotoxicity in Baker′s Yeast. Angewandte Chemie - International Edition, 2015, 54, 8390-8394.	13.8	47
6	Design of a MCoTI-Based Cyclotide with Angiotensin (1-7)-Like Activity. Molecules, 2016, 21, 152.	3.8	34
7	Recombinant production of rhesus î¸-defensin-1 (RTD-1) using a bacterial expression system. Molecular BioSystems, 2012, 8, 1359.	2.9	32
8	Efficient one-pot cyclization/folding of Rhesus \hat{l}_{s} -defensin-1 (RTD-1). Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2823-2826.	2.2	28
9	Using Singular Value Decomposition to Characterize Protein–Protein Interactions by Inâ€eell NMR Spectroscopy. ChemBioChem, 2014, 15, 929-933.	2.6	27
10	Impact of Buffers on Colloidal Property and Aggregation Propensities of a Bispecific Antibody. Journal of Pharmaceutical Sciences, 2019, 108, 1139-1147.	3.3	16
11	Utility of High Resolution NMR Methods to Probe the Impact of Chemical Modifications on Higher Order Structure of Monoclonal Antibodies in Relation to Antigen Binding. Pharmaceutical Research, 2019, 36, 130.	3.5	12
12	Probing Conformational Diversity of Fc Domains in Aggregation-Prone Monoclonal Antibodies. Pharmaceutical Research, 2018, 35, 220.	3.5	9
13	Utility of High Resolution 2D NMR Fingerprinting in Assessing Viscosity of Therapeutic Monoclonal Antibodies. Pharmaceutical Research, 2022, 39, 529-539.	3.5	5
14	Innentitelbild: Recombinant Expression and Phenotypic Screening of a Bioactive Cyclotide Against α-Synuclein-Induced Cytotoxicity in Baker′s Yeast (Angew. Chem. 29/2015). Angewandte Chemie, 2015, 127, 8420-8420.	2.0	0