Mariana Nikolova-Karakashian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11636065/publications.pdf Version: 2024-02-01

Mariana

#	Article	IF	CITATIONS
1	Pivotal Role for Acidic Sphingomyelinase in Cerebral Ischemia-Induced Ceramide and Cytokine Production, and Neuronal Apoptosis. Journal of Molecular Neuroscience, 2000, 15, 85-98.	2.3	188
2	High Density Lipoprotein Binding to Scavenger Receptor, Class B, Type I Activates Endothelial Nitric-oxide Synthase in a Ceramide-dependent Manner. Journal of Biological Chemistry, 2002, 277, 11058-11063.	3.4	153
3	Role of Sphingosine 1-Phosphate in the Mitogenesis Induced by Oxidized Low Density Lipoprotein in Smooth Muscle Cells via Activation of Sphingomyelinase, Ceramidase, and Sphingosine Kinase. Journal of Biological Chemistry, 1999, 274, 21533-21538.	3.4	150
4	Bimodal Regulation of Ceramidase by Interleukin-1β. Journal of Biological Chemistry, 1997, 272, 18718-18724.	3.4	146
5	Sphingolipid Biosynthesis de Novo by Rat Hepatocytes in Culture Journal of Biological Chemistry, 1995, 270, 13834-13841.	3.4	109
6	Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: Implications for endothelial apoptosis. Cancer Biology and Therapy, 2005, 4, 979-986.	3.4	105
7	Acid Sphingomyelinase Deficiency Prevents Diet-induced Hepatic Triacylglycerol Accumulation and Hyperglycemia in Mice. Journal of Biological Chemistry, 2009, 284, 8359-8368.	3.4	84
8	Apoptosis and Dysregulated Ceramide Metabolism in a Murine Model of Alcohol-Enhanced Lipopolysaccharide Hepatotoxicity. Alcoholism: Clinical and Experimental Research, 2000, 24, 1557-1565.	2.4	81
9	Elevation of ceramide in serum lipoproteins during acute phase response in humans and mice: role of serine–palmitoyl transferase. Archives of Biochemistry and Biophysics, 2003, 419, 120-128.	3.0	81
10	Regulation of Cytochrome P450 2C11 (CYP2C11) Gene Expression by Interleukin-1, Sphingomyelin Hydrolysis, and Ceramides in Rat Hepatocytes. Journal of Biological Chemistry, 1995, 270, 25233-25238.	3.4	76
11	Role of Neutral Sphingomyelinases in Aging and Inflammation. Sub-Cellular Biochemistry, 2008, 49, 469-486.	2.4	73
12	Dihydroceramide Biology. Journal of Biological Chemistry, 1997, 272, 21128-21136.	3.4	67
13	[22] Ceramidases. Methods in Enzymology, 2000, 311, 194-201.	1.0	49
14	Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue. American Journal of Physiology - Cell Physiology, 2010, 299, C552-C560.	4.6	44
15	Ceramide Mediates Age-associated Increase in Macrophage Cyclooxygenase-2 Expression. Journal of Biological Chemistry, 2002, 277, 30784-30791.	3.4	43
16	Diaphragm dysfunction in heart failure is accompanied by increases in neutral sphingomyelinase activity and ceramide content. European Journal of Heart Failure, 2014, 16, 519-525.	7.1	38
17	Alcoholic and non-alcoholic fatty liver disease: Focus on ceramide. Advances in Biological Regulation, 2018, 70, 40-50.	2.3	37
18	Regulation of cytochrome P450 expression by sphingolipids. Chemistry and Physics of Lipids, 1999, 102, 131-139.	3.2	35

Mariana

#	Article	IF	CITATIONS
19	Uptake and Metabolism of Low Density Lipoproteins with Elevated Ceramide Content by Human Microvascular Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 26992-26999.	3.4	33
20	Increased liver tumor formation in neutral sphingomyelinase-2-deficient mice. Journal of Lipid Research, 2018, 59, 795-804.	4.2	30
21	Resveratrol alters the lipid composition, metabolism and peroxide level in senescent rat hepatocytes. Chemico-Biological Interactions, 2014, 207, 74-80.	4.0	29
22	Scavenger Receptor BI Prevents Nitric Oxide–Induced Cytotoxicity and Endotoxin-Induced Death. Circulation Research, 2006, 98, e60-5.	4.5	28
23	Sphingolipids at the Crossroads of NAFLD and Senescence. Advances in Cancer Research, 2018, 140, 155-190.	5.0	21
24	[5] Assays for the biosynthesis of sphingomyelin and ceramide phosphoethanolamine. Methods in Enzymology, 2000, 311, 31-42.	1.0	13
25	Secretory sphingomyelinase (S-SMase) activity is elevated in patients with rheumatoid arthritis. Clinical Rheumatology, 2018, 37, 1395-1399.	2.2	9
26	Ceramide Synthase and Ceramidases in the Regulation of Sphingoid Base Metabolism. Molecular Biology Intelligence Unit, 1997, , 159-172.	0.2	8
27	Skeletal Muscle Cell Growth Alters the Lipid Composition of Extracellular Vesicles. Membranes, 2021, 11, 619.	3.0	7
28	Methods to Characterize Synthesis and Degradation of Sphingomyelin at the Plasma Membrane and Its Impact on Lipid Raft Dynamics. Methods in Molecular Biology, 2021, 2187, 113-129.	0.9	7
29	Apoptosis and Dysregulated Ceramide Metabolism in a Murine Model of Alcohol-Enhanced Lipopolysaccharide Hepatotoxicity. Alcoholism: Clinical and Experimental Research, 2000, 24, 1557-1565.	2.4	6
30	A Novel Combination of Fruits and Vegetables Prevents Diet-Induced Hepatic Steatosis and Metabolic Dysfunction in Mice. Journal of Nutrition, 2020, 150, 2950-2960.	2.9	5
31	Ceramide modulates nicotinic receptor-dependent Ca2+ signaling in rat chromaffin cells. Journal of Neuroscience Research, 2001, 66, 559-564.	2.9	4
32	Neutral Sphingomyelinase 2 Mediates Oxidative Stress Effects on Astrocyte Senescence and Synaptic Plasticity Transcripts. Molecular Neurobiology, 2022, 59, 3233-3253.	4.0	4
33	Onset of Senescence and Steatosis in Hepatocytes as a Consequence of a Shift in the Diacylglycerol/Ceramide Balance at the Plasma Membrane. Cells, 2021, 10, 1278.	4.1	3
34	Prevention of Non-Alcoholic Fatty Liver Disease by Fruits and Vegetables Supplementation in Mice is Associated with Their Antioxidant Property. Current Developments in Nutrition, 2020, 4, nzaa068_008.	0.3	1
35	Supplementation with a Novel Combination of Fruits and Vegetables Prevented High Fat Diet-Induced Cognitive Impairment in Mice. Current Developments in Nutrition, 2020, 4, nzaa057_023.	0.3	0
36	Activation of Neutral Sphingomyelinaseâ€2 and Protein Phosphatase 2A by Interleukinâ€1B: role in IRAKâ€1 degradation and intracellular translocation. FASEB Journal, 2010, 24, lb601.	0.5	0

#ARTICLEIFCITATIONS37Expression and Characterization of Recombinant Neutral Sphingomyelinase 2 in Escherichia coli:
Evidence of Sensitivity to Redox State. FASEB Journal, 2013, 27, 1019.2.0.50