Wenbing Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11635185/publications.pdf Version: 2024-02-01

WENRING SHI

#	Article	IF	CITATIONS
1	Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes. Journal of Hazardous Materials, 2022, 422, 126929.	12.4	69
2	Nitrogen-doped Ti3C2 MXene quantum dots as novel high-efficiency electrochemiluminescent emitters for sensitive mucin 1 detection. Sensors and Actuators B: Chemical, 2022, 350, 130891.	7.8	42
3	C ₃ N ₄ /Cu/ZnFe ₂ O ₄ Ternary Nanocomposites: Removal of Environmental Pollutants by the Synergy of Physical Adsorption and Photocatalysis. ChemistrySelect, 2022, 7, .	1.5	2
4	Efficient Recovery of Vanadium from High-Chromium Vanadium Slag with Calcium-Roasting Acidic Leaching. Minerals (Basel, Switzerland), 2022, 12, 160.	2.0	5
5	Removal and recovery of vanadium from waste by chemical precipitation, adsorption, solvent extraction, remediation, photo-catalyst reduction and membrane filtration. A review. Environmental Chemistry Letters, 2022, 20, 1763-1776.	16.2	24
6	A Clean Method for Vanadium (V) Reduction with Oxalic Acid. Metals, 2022, 12, 557.	2.3	3
7	Programming a hollow core-shell CuS@CuSe heteromicrocubes synergizing superior multienzyme activity function as enhanced biosensing platforms. Sensors and Actuators B: Chemical, 2022, 359, 131592.	7.8	8
8	Anion engineering guided MOF-to-hollow nickel phosphate transformation enabling robust electrochemical platforms for detection of hydrogen peroxide and hydrazine. Sensors and Actuators B: Chemical, 2022, 369, 132373.	7.8	11
9	Metal–organic framework-derived yolk–shell hollow Ni/NiO@C microspheres for bifunctional non-enzymatic glucose and hydrogen peroxide biosensors. Journal of Materials Science, 2021, 56, 442-456.	3.7	36
10	Structural Engineering of Hollow Microflower-like CuS@C Hybrids as Versatile Electrochemical Sensing Platform for Highly Sensitive Hydrogen Peroxide and Hydrazine Detection. ACS Applied Materials & Interfaces, 2021, 13, 40942-40952.	8.0	31
11	Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection. Talanta, 2021, 235, 122735.	5.5	45
12	Copper-Catalyzed Coupling of Sulfonamides with Alkylamines: Synthesis of (<i>E</i>)- <i>N</i> -Sulfonylformamidines. Journal of Organic Chemistry, 2020, 85, 2092-2102.	3.2	13
13	Molybdenum disulfides nanoflowers anchoring iron-based metal organic framework: A synergetic catalyst with superior peroxidase-mimicking activity for biosensing. Sensors and Actuators B: Chemical, 2020, 305, 127530.	7.8	32
14	pH-regulated reversible photoluminescence and localized surface plasmon resonances arising from molybdenum oxide quantum dot. Applied Materials Today, 2020, 18, 100516.	4.3	7
15	Coordination-driven assembly of a 3d–4f heterometallic organic framework with 1D Cu ₄ I ₄ and Eu-based chains: syntheses, structures and various properties. Dalton Transactions, 2020, 49, 11209-11216.	3.3	4
16	Facile and rapid synthesis of emission color-tunable molybdenum oxide quantum dots as a versatile probe for fluorescence imaging and environmental monitoring. Analyst, The, 2020, 145, 6270-6276.	3.5	6
17	A controllable synthesis of hollow pumpkin-like CuO/Cu ₂ O composites for ultrasensitive non-enzymatic glucose and hydrogen peroxide biosensors. New Journal of Chemistry, 2020, 44, 20411-20418.	2.8	11
18	Design and Construction of a Porous Heterometallic Organic Framework Based on Cu ₆ I ₆ Clusters and One-Dimensional Tb ^{III} Chains: Syntheses, Crystal Structure, and Various Properties. Crystal Growth and Design, 2020, 20, 4135-4143.	3.0	8

WENBING SHI

#	Article	IF	CITATIONS
19	Assembly of Two Self-Interpenetrating Metal–Organic Frameworks Based on a Trigonal Ligand: Syntheses, Crystal Structures, and Properties. Inorganic Chemistry, 2020, 59, 7135-7142.	4.0	23
20	Developing a fast electrochemical aptasensor method for the quantitative detection of penicillin G residue in milk with high sensitivity and good anti-fouling ability. Microchemical Journal, 2020, 157, 105077.	4.5	16
21	High-Efficiency CNNS@NH ₂ -MIL(Fe) Electrochemiluminescence Emitters Coupled with Ti ₃ C ₂ Nanosheets as a Matrix for a Highly Sensitive Cardiac Troponin I Assay. Analytical Chemistry, 2020, 92, 8992-9000.	6.5	59
22	"Signal-on―SERS sensing platform for highly sensitive and selective Pb2+ detection based on catalytic hairpin assembly. Analytica Chimica Acta, 2020, 1127, 106-113.	5.4	22
23	Lengthening the aptamer to hybridize with a stem-loop DNA assistant probe for the electrochemical detection of kanamycin with improved sensitivity. Analytical and Bioanalytical Chemistry, 2020, 412, 2391-2397.	3.7	7
24	Construction of a dual-response luminescent metal-organic framework with excellent stability for detecting Fe3+ and antibiotic with high selectivity and sensitivity. Journal of Solid State Chemistry, 2020, 284, 121183.	2.9	16
25	Rational design and synthesis of a stable pillar-layer NaI-organic framework as a multi-responsive luminescent sensor in aqueous solutions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118106.	3.9	7
26	DNA Cascade Reaction with High-Efficiency Target Conversion for Ultrasensitive Electrochemiluminescence microRNA Detection. Analytical Chemistry, 2019, 91, 10258-10265.	6.5	25
27	Hierarchical Ag/Bi ₂ MoO ₆ hollow nanoboxes with high photocatalytic performance. Dalton Transactions, 2019, 48, 12009-12012.	3.3	11
28	An excellently stable Tb ^{III} –organic framework with outstanding stability as a rapid, reversible, and multi-responsive luminescent sensor in water. Dalton Transactions, 2019, 48, 12910-12917.	3.3	39
29	Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly. Biosensors and Bioelectronics, 2019, 143, 111619.	10.1	66
30	Two kanamycin electrochemical aptamer-based sensors using different signal transduction mechanisms: A comparison of electrochemical behavior and sensing performance. Bioelectrochemistry, 2019, 129, 270-277.	4.6	11
31	Fabrication of Bi ₂ MoO ₆ /ZnO Heterojunction Nanosheet Array with High Photoelectrochemical Property. Journal of Nanoscience and Nanotechnology, 2019, 19, 4007-4014.	0.9	5
32	Hierarchical MoS ₂ /MoO ₃ nanotubes with excellent electrochemical performance: MoS ₂ bubbles on MoO ₃ nanotubes. CrystEngComm, 2019, 21, 6698-6702.	2.6	8
33	Catalyzed Deposition of Signal Reporter for Highly Sensitive Surface-Enhanced Raman Spectroscopy Immunoassay Based on Tyramine Signal Amplification Strategy. Analytical Chemistry, 2018, 90, 13159-13162.	6.5	28
34	A fast-responsive fluorescent probe for sensitive detection of graphene oxide based on MoS ₂ quantum dots. Analyst, The, 2018, 143, 3107-3113.	3.5	12
35	A signal-on electrochemical aptasensor for highly sensitive and specific detection of kanamycin based on target-induced signaling probe shifting mechanism. Sensors and Actuators B: Chemical, 2018, 273, 480-487.	7.8	18
36	Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor. Biosensors and Bioelectronics, 2017, 91, 817-823.	10.1	3

WENBING SHI

#	Article	IF	CITATIONS
37	Metal–organic framework MIL-53(Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC Advances, 2015, 5, 17451-17457.	3.6	114
38	Fe ₃ O ₄ –MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Advances, 2014, 4, 45809-45815.	3.6	89
39	Mesoporous material-based manipulation of the enzyme-like activity of CoFe2O4 nanoparticles. Journal of Materials Chemistry A, 2014, 2, 2482.	10.3	56
40	Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Analytica Chimica Acta, 2013, 796, 92-100.	5.4	181
41	Fe–Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing. Chemical Communications, 2013, 49, 5013.	4.1	173
42	Highly sensitive and selective fluorescent assay for quantitative detection of divalent copper ion in environmental water samples. Analytical Methods, 2011, 3, 2102.	2.7	12
43	CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chemical Communications, 2011, 47, 10785.	4.1	281
44	Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chemical Communications, 2011, 47, 6695.	4.1	833
45	Luminol–silver nitrate chemiluminescence enhancement induced by cobalt ferrite nanoparticles. Luminescence, 2011, 26, 547-552.	2.9	14
46	Pork Heart Tissueâ€Based Chemiluminescence Biosensor for Pyruvic Acid. Analytical Letters, 2006, 39, 1823-1836.	1.8	5
47	Ion-pair complex-based solvent extraction combined with chemiluminescence determination of chlorpromazine hydrochloride with luminol in reverse micelles. Journal of Pharmaceutical and Biomedical Analysis, 2004, 36, 197-203.	2.8	31
48	Aptasensor Based on MoS ₂ Quantum Dots with Upconversion Fluorescence for Microcystin-LR Detection via the Inner Filter Effect. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	9