Peter H Dahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11632199/publications.pdf

Version: 2024-02-01

59 papers 1,088 citations

³⁹⁴⁴²¹
19
h-index

30 g-index

70 all docs

70 docs citations

70 times ranked

571 citing authors

#	Article	IF	CITATIONS
1	Range-Dependent Inversion for Seabed Parameters Using Vector Acoustic Measurements of Underwater Ship Noise. IEEE Journal of Oceanic Engineering, 2022, 47, 680-689.	3.8	9
2	A CNN for Range and Seabed Estimation on Normalized and Extracted Time-Series Impulses. IEEE Journal of Oceanic Engineering, 2022, 47, 833-846.	3.8	5
3	Vector acoustic and polarization properties of underwater ship noise. Journal of the Acoustical Society of America, 2022, 151, 3818-3827.	1.1	7
4	Physical effects of sound exposure from underwater explosions on Pacific mackerel (<i>Scomber) Tj ETQq0 0 0 r 3947-3956.</i>	gBT /Over 1.1	lock 10 Tf 50 (8
5	The Deployment of the Seismometer to Investigate Ice and Ocean Structure (SIIOS) in Northwest Greenland: An Analog Experiment for Icy Ocean World Seismic Deployments. Seismological Research Letters, 2021, 92, 2036-2049.	1.9	5
6	Trends in low-frequency underwater noise off the Oregon coast and impacts of COVID-19 pandemic. Journal of the Acoustical Society of America, 2021, 149, 4073-4077.	1.1	11
7	Polarization of ocean acoustic normal modes. Journal of the Acoustical Society of America, 2021, 150, 1897-1911.	1.1	9
8	Vector Acoustic Analysis of Time-Separated Modal Arrivals From Explosive Sound Sources During the 2017 Seabed Characterization Experiment. IEEE Journal of Oceanic Engineering, 2020, 45, 131-143.	3.8	26
9	Short-Range Signatures of Explosive Sounds in Shallow Water Used for Seabed Characterization. IEEE Journal of Oceanic Engineering, 2020, 45, 14-25.	3.8	13
10	Physical effects of sound exposure from underwater explosions on Pacific sardines (<i>Sardinops) Tj ETQq0 0 0 0</i>	gBT/Over	lock 10 Tf 50
11	Seabed and range estimation of impulsive time series using a convolutional neural network. Journal of the Acoustical Society of America, 2020, 147, EL403-EL408.	1.1	40
12	The Deployment of the Seismometer to Investigate Ice and Ocean Structure (SIIOS) on Gulkana Glacier, Alaska. Seismological Research Letters, 2020, 91, 1901-1914.	1.9	8
13	Estimation of seabed properties and range from vector acoustic observations of underwater ship noise. Journal of the Acoustical Society of America, 2020, 147, EL345-EL350.	1.1	13
14	Geoacoustic inversion using vector acoustic modal dispersion: a sensitivity study., 2019,,.		1
15	On the underwater sound field from impact pile driving: Arrival structure, precursor arrivals, and energy streamlines. Journal of the Acoustical Society of America, 2017, 142, 1141-1155.	1.1	20
16	Observations of Sea-Surface Waves During the 2013 Target and Reverberation Experiment (TREX13) and Relation to Midfrequency Sonar. IEEE Journal of Oceanic Engineering, 2017, 42, 250-259.	3.8	7
17	Observations of Water Column and Bathymetric Effects on the Incident Acoustic Field Associated With Shallow-Water Reverberation Experiments. IEEE Journal of Oceanic Engineering, 2017, 42, 1146-1161.	3.8	10
18	Measurement of acoustic particle motion in shallow water and its application to geoacoustic inversion. Journal of the Acoustical Society of America, 2016, 139, 311-319.	1.1	18

#	Article	IF	CITATIONS
19	Modeling explosion generated Scholte waves in sandy sediments with power law dependent shear wave speed. Journal of the Acoustical Society of America, 2015, 138, EL370-EL374.	1.1	8
20	The underwater sound field from vibratory pile driving. Journal of the Acoustical Society of America, 2015, 137, 3544-3554.	1.1	20
21	Flow-noise and turbulence in two tidal channels. Journal of the Acoustical Society of America, 2014, 135, 1764-1774.	1.1	40
22	Peak sound pressure and sound exposure level from underwater explosions in shallow water. Journal of the Acoustical Society of America, 2014, 136, EL218-EL223.	1.1	28
23	Beam forming of the underwater sound field from impact pile driving. Journal of the Acoustical Society of America, 2013, 134, EL1-EL6.	1.1	13
24	Elliptical acoustic particle motion in underwater waveguides. Journal of the Acoustical Society of America, 2013, 134, 109-118.	1.1	11
25	Vertical coherence and forward scattering from the sea surface and the relation to the directional wave spectrum. Journal of the Acoustical Society of America, 2013, 134, 1843-1853.	1.1	7
26	Underwater radiated noise measurements of a noise-reduced fisheries research vessel. ICES Journal of Marine Science, 2013, 70, 480-484.	2.5	3
27	Scattering measurements from a dissolving bubble. Journal of the Acoustical Society of America, 2012, 131, 4243-4251.	1.1	17
28	Properties of the acoustic intensity vector field in a shallow water waveguide. Journal of the Acoustical Society of America, 2012, 131, 2023-2035.	1.1	30
29	Underwater Mach wave radiation from impact pile driving: Theory and observation. Journal of the Acoustical Society of America, 2011, 130, 1209-1216.	1.1	97
30	Acoustic radiation from a submerged pile during pile driving. , 2010, , .		6
31	Implications of signal intensity fluctuations on vector sensor array processing. , 2010, , .		0
32	Characterizing underwater noise from industrial pile driving at close range. , 2010, , .		2
33	Observations and modeling of angular compression and vertical spatial coherence in sea surface forward scattering. Journal of the Acoustical Society of America, 2010, 127, 96-103.	1.1	11
34	Observations of the R reflector and sediment interface reflection at the Shallow Water '06 Central Site. Journal of the Acoustical Society of America, 2008, 124, EL128-EL134.	1.1	30
35	Field measurements and modeling of attenuation from near-surface bubbles for frequencies 1–20kHz. Journal of the Acoustical Society of America, 2008, 124, EL163-EL169.	1.1	26
36	Mid-frequency acoustic propagation in shallow water on the New Jersey shelf. II. Intensity fluctuation. Journal of the Acoustical Society of America, 2008, 124, EL91-EL96.	1.1	1

#	Article	IF	Citations
37	Mid-frequency acoustic propagation in shallow water on the New Jersey shelf: Mean intensity. Journal of the Acoustical Society of America, 2008, 124, EL85-EL90.	1.1	2
38	Spectral properties of the interference head wave. Journal of the Acoustical Society of America, 2007, 122, 146-150.	1.1	3
39	Measurement and simulation of the channel intensity impulse response for a site in the East China Sea. Journal of the Acoustical Society of America, 2006, 119, 2677-2685.	1.1	81
40	Precursor arrivals in the Yellow Sea, their distinction from first-order head waves, and their geoacoustic inversion. Journal of the Acoustical Society of America, 2006, 120, 3525-3533.	1.1	10
41	First-order and zeroth-order head waves, their sequence, and implications for geoacoustic inversion. Journal of the Acoustical Society of America, 2006, 119, 3660-3668.	1.1	17
42	The Sea Surface Bounce Channel: Bubble-Mediated Energy Loss and Time/Angle Spreading. AIP Conference Proceedings, 2004, , .	0.4	7
43	Bound and free surface waves in a large wind-wave tank. Journal of Geophysical Research, 2004, 109, .	3.3	21
44	Forward scattering from the sea surface and the van Cittert–Zernike theorem. Journal of the Acoustical Society of America, 2004, 115, 589-599.	1.1	34
45	The contribution of bubbles to high-frequency sea surface backscatter: A 24-h time series of field measurements. Journal of the Acoustical Society of America, 2003, 113, 769-780.	1.1	20
46	Scattering from a single bubble near a roughened air–water interface: Laboratory measurements and modeling. Journal of the Acoustical Society of America, 2003, 113, 94-101.	1.1	6
47	Spatial Coherence of Signals Forward Scattered from the Sea Surface in the East China Sea. , 2002, , 55-62.		1
48	On scattering from a bubble located near a flat air–water interface: Laboratory measurements and modeling. Journal of the Acoustical Society of America, 2001, 110, 1271-1281.	1.1	8
49	Bubble clouds and their transport within the surf zone as measured with a distributed array of upward-looking sonars. Journal of the Acoustical Society of America, 2001, 109, 133-142.	1.1	12
50	Effects of interaction between two bubble scatterers. Journal of the Acoustical Society of America, 2000, 107, 3006-3017.	1.1	29
51	On bistatic sea surface scattering: Field measurements and modeling. Journal of the Acoustical Society of America, 1999, 105, 2155-2169.	1.1	125
52	Microwave and acoustic scattering from parasitic capillary waves. Journal of Geophysical Research, 1999, 104, 25853-25866.	3.3	25
53	Simultaneous acoustic and microwave backscattering from the sea surface. Journal of the Acoustical Society of America, 1997, 101, 2583-2595.	1.1	28
54	The variability of high-frequency acoustic backscatter from the region near the sea surface. Journal of the Acoustical Society of America, 1997, 101, 2596-2602.	1.1	11

#	Article	IF	CITATIONS
55	On the spatial coherence and angular spreading of sound forward scattered from the sea surface: Measurements and interpretive model. Journal of the Acoustical Society of America, 1996, 100, 748-758.	1.1	26
56	High Frequency Noise Emitted from Ocean Breaking Waves. , 1996, , .		1
57	Highâ€frequency surface backscattering: A 24â€h time series of data showing transition between Bragg and resonant bubble scattering. Journal of the Acoustical Society of America, 1996, 100, 2840-2840.	1.1	1
58	On bubble clouds produced by breaking waves: An event analysis of ocean acoustic measurements. Journal of Geophysical Research, 1995, 100, 5007.	3.3	27
59	Measurement of the temporal fluctuations of cw tones propagated in the marginal ice zone. Journal of the Acoustical Society of America, 1988, 83, 2175-2179.	1.1	7