
Maurizio Brigotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1163140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome. Cells, 2022, 11, 1755.	4.1	3
2	Method for the Detection of the Cleaved Form of Shiga Toxin 2a Added to Normal Human Serum. Toxins, 2021, 13, 94.	3.4	2
3	Extracellular Vesicles and Renal Endothelial Cells. American Journal of Pathology, 2021, 191, 795-804.	3.8	7
4	Bloody Diarrhea and Shiga Toxin–Producing Escherichia coli Hemolytic Uremic Syndrome in Children: Data from the ItalKid-HUS Network. Journal of Pediatrics, 2021, 237, 34-40.e1.	1.8	16
5	Particulate Shiga Toxin 2 in Blood is Associated to the Development of Hemolytic Uremic Syndrome in Children. Thrombosis and Haemostasis, 2020, 120, 107-120.	3.4	16
6	ls Shigatoxin 1 protective for the development of Shigatoxin 2-related hemolytic uremic syndrome in children? Data from the ItalKid-HUS Network. Pediatric Nephrology, 2020, 35, 1997-2001.	1.7	12
7	Deuterium Incorporation Protects Cells from Oxidative Damage. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	4.0	2
8	Hemidesmus indicus induces apoptosis via proteasome inhibition and generation of reactive oxygen species. Scientific Reports, 2019, 9, 7199.	3.3	11
9	The structure of the Shiga toxin 2a Aâ€subunit dictates the interactions of the toxin with blood components. Cellular Microbiology, 2019, 21, e13000.	2.1	13
10	Soluble Toll-Like Receptor 4 Impairs the Interaction of Shiga Toxin 2a with Human Serum Amyloid P Component. Toxins, 2018, 10, 379.	3.4	9
11	Human monocytes stimulated by Shiga toxin 1a via globotriaosylceramide release proinflammatory molecules associated with hemolytic uremic syndrome. International Journal of Medical Microbiology, 2018, 308, 940-946.	3.6	12
12	An Improved Method for the Sensitive Detection of Shiga Toxin 2 in Human Serum. Toxins, 2018, 10, 59.	3.4	13
13	Cap-independent protein synthesis is enhanced by betaine under hypertonic conditions. Biochemical and Biophysical Research Communications, 2017, 483, 936-940.	2.1	3
14	The inhibition of lactate dehydrogenase A hinders the transcription of histone 2B gene independently from the block of aerobic glycolysis. Biochemical and Biophysical Research Communications, 2017, 485, 742-745.	2.1	8
15	Variable biological properties of two different preparations of Shiga toxins yielding new insights into eHUS pathogenesis. Molecular Immunology, 2017, 89, 159.	2.2	0
16	A reconstituted cell-free assay for the evaluation of the intrinsic activity of purified human ribosomes. Nature Protocols, 2016, 11, 1309-1325.	12.0	29
17	The Antibiotic Polymyxin B Impairs the Interactions between Shiga Toxins and Human Neutrophils. Journal of Immunology, 2016, 196, 1177-1185.	0.8	8
18	Early Volume Expansion and Outcomes of Hemolytic Uremic Syndrome. Pediatrics, 2016, 137, .	2.1	74

MAURIZIO BRIGOTTI

#	Article	IF	CITATIONS
19	Serum Shiga toxin 2 values in patients during acute phase of diarrhoeaâ€associated haemolytic uraemic syndrome. Acta Paediatrica, International Journal of Paediatrics, 2015, 104, e564-8.	1.5	19
20	A Rapid and Sensitive Method to Measure the Functional Activity of Shiga Toxins in Human Serum. Toxins, 2015, 7, 4564-4576.	3.4	10
21	RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes. Nucleic Acids Research, 2015, 43, e153-e153.	14.5	8
22	Human ribosomes from cells with reduced dyskerin levels are intrinsically altered in translation. FASEB Journal, 2015, 29, 3472-3482.	0.5	57
23	Galloflavin prevents the binding of lactate dehydrogenase A to single stranded DNA and inhibits RNA synthesis in cultured cells. Biochemical and Biophysical Research Communications, 2013, 430, 466-469.	2.1	25
24	5′-Untranslated region of heat shock protein 70 mRNA drives translation under hypertonic conditions. Biochemical and Biophysical Research Communications, 2013, 431, 321-325.	2.1	8
25	Shiga Toxin 1, as DNA Repair Inhibitor, Synergistically Potentiates the Activity of the Anticancer Drug, Mafosfamide, on Raji Cells. Toxins, 2013, 5, 431-444.	3.4	8
26	Dyskerin depletion increases VEGF mRNA internal ribosome entry site-mediated translation. Nucleic Acids Research, 2013, 41, 8308-8318.	14.5	50
27	Identification of TLR4 as the Receptor That Recognizes Shiga Toxins in Human Neutrophils. Journal of Immunology, 2013, 191, 4748-4758.	0.8	76
28	The Interactions of Human Neutrophils with Shiga Toxins and Related Plant Toxins: Danger or Safety?. Toxins, 2012, 4, 157-190.	3.4	28
29	Clinical Relevance of Shiga Toxin Concentrations in the Blood of Patients With Hemolytic Uremic Syndrome. Pediatric Infectious Disease Journal, 2011, 30, 486-490.	2.0	67
30	Change in Conformation with Reduction of α-Helix Content Causes Loss of Neutrophil Binding Activity in Fully Cytotoxic Shiga Toxin 1. Journal of Biological Chemistry, 2011, 286, 34514-34521.	3.4	14
31	Shiga toxin 1 and ricin A chain bind to human polymorphonuclear leucocytes through a common receptor. Biochemical Journal, 2010, 432, 173-180.	3.7	32
32	Endothelial damage induced by Shiga toxins delivered by neutrophils during transmigration. Journal of Leukocyte Biology, 2010, 88, 201-210.	3.3	40
33	Novel Dyskerin-Mediated Mechanism of p53 Inactivation through Defective mRNA Translation. Cancer Research, 2010, 70, 4767-4777.	0.9	95
34	Interactions between Shiga toxins and human polymorphonuclear leukocytes. Journal of Leukocyte Biology, 2008, 84, 1019-1027.	3.3	50
35	Molecular Damage and Induction of Proinflammatory Cytokines in Human Endothelial Cells Exposed to Shiga Toxin 1, Shiga Toxin 2, and α-Sarcin. Infection and Immunity, 2007, 75, 2201-2207.	2.2	34
36	Inhibition byÂsuramin ofÂprotein synthesis inÂvitro. Ribosomes asÂtheÂtarget ofÂtheÂdrug. Biochimie, 2006, 88, 497-503.	2.6	7

MAURIZIO BRIGOTTI

#	Article	IF	CITATIONS
37	Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress. Journal of Physiology, 2006, 576, 391-401.	2.9	57
38	Shiga Toxins Present in the Gut and in the Polymorphonuclear Leukocytes Circulating in the Blood of Children with Hemolytic-Uremic Syndrome. Journal of Clinical Microbiology, 2006, 44, 313-317.	3.9	52
39	Shiga toxin 1 and ricin inhibit the repair of H2O2-induced DNA single strand breaks in cultured mammalian cells. DNA Repair, 2005, 4, 271-277.	2.8	34
40	Flow cytometry detection of Shiga toxins in the blood from children with hemolytic uremic syndrome. Cytometry, 2004, 61B, 40-44.	1.8	50
41	Shiga toxin 1Âacting on DNA in vitro is a heat-stable enzyme not requiring proteolytic activation. Biochimie, 2004, 86, 305-309.	2.6	12
42	Ribosome-inactivating proteins depurinate poly(ADP-ribosyl)ated poly(ADP-ribose) polymerase and have transforming activity for 3T3 fibroblasts. FEBS Letters, 2003, 538, 178-182.	2.8	44
43	Effects of osmolarity, ions and compatible osmolytes on cell-free protein synthesis. Biochemical Journal, 2003, 369, 369-374.	3.7	59
44	Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells1. FASEB Journal, 2002, 16, 365-372.	0.5	133
45	Nucleotides U28-A42 and A37 in unmodified yeast tRNATrpas negative identity elements for bovine tryptophanyl-tRNA synthetase. FEBS Letters, 2001, 492, 238-241.	2.8	6
46	Shiga toxin 1: damage to DNA in vitro. Toxicon, 2001, 39, 341-348.	1.6	26
47	A survey of adenine and 4-aminopyrazolo[3,4-d]pyrimidine (4-APP) as inhibitors of ribosome-inactivating proteins (RIPs). Life Sciences, 2000, 68, 331-336.	4.3	5
48	Identity elements in bovine tRNATrp required for the specific stimulation of gelonin, a plant ribosome-inactivating protein. Rna, 1999, 5, 1357-1363.	3.5	5
49	Attenuated Expression of 70-kDa Heat Shock Protein in WI-38 Human Fibroblasts during Aging in Vitro. Experimental Cell Research, 1999, 252, 20-32.	2.6	35
50	No convergence for references. Nature, 1998, 393, 301-301.	27.8	0
51	Uncompetitive inhibition by adenine of the RNA-N-glycosidase activity of ribosome-inactivating proteins. BBA - Proteins and Proteomics, 1998, 1384, 277-284.	2.1	10
52	Shigaâ€like toxin I is a polynucleotide:adenosine glycosidase. Molecular Microbiology, 1998, 29, 661-662.	2.5	37
53	Primer tRNATrp of RSV-transformed or RAV-1-infected cells up-regulates the antiribosomal activity of gelonin. Biochimie, 1998, 80, 575-578.	2.6	1
54	Identification of the tRNAs which up-regulate agrostin, barley RIP and PAP-S, three ribosome-inactivating proteins of plant origin. FEBS Letters, 1998, 431, 259-262.	2.8	9

MAURIZIO BRIGOTTI

#	Article	IF	CITATIONS
55	Cofactor requirement of ribosome-inactivating proteins from plants. Journal of Experimental Botany, 1997, 48, 1519-1523.	4.8	8
56	The RNA-N-glycosidase activity of Shiga-like toxin I: Kinetic parameters of the native and activated toxin. Toxicon, 1997, 35, 1431-1437.	1.6	30
57	tRNATrp as cofactor of gelonin, a ribosome-inactivating protein with RNA-N-glycosidase activity features required for the cofactor activity. IUBMB Life, 1996, 40, 181-188.	3.4	1
58	Differential up-regulation by tRNAs of ribosome-inactivating proteins. FEBS Letters, 1995, 373, 115-118.	2.8	15
59	Partial purification of two proteins which sensitize ribosomes to gelonin: Sensitization is not linked to phosphorylation of ribosomal proteins. Toxicon, 1993, 31, 989-996.	1.6	4
60	Differential requirement of ATP and extra-ribosomal proteins for ribosome inactivation by eight RNA N-glycosidases. Biochemical and Biophysical Research Communications, 1992, 182, 579-582.	2.1	31
61	Elongation factor 2 from Artemia salina embryos and its affinity for ribosomes. FEBS Journal, 1991, 200, 13-18.	0.2	3
62	Alpha-sarcin impairs the N-glycosidase activity of ricin on ribosomes. Biochemical and Biophysical Research Communications, 1989, 160, 857-861.	2.1	6
63	Interaction of diphtheria toxin fragment A and of elongation factor 2 with Cibacron blue. Bioscience Reports, 1987, 7, 737-743.	2.4	6