JosÃé Aracil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1163094/publications.pdf

Version: 2024-02-01

136950 102487 4,538 81 32 citations h-index papers

g-index 81 81 81 3999 docs citations times ranked citing authors all docs

66

#	Article	IF	CITATIONS
1	Technoeconomic analysis of <i>Jatropha curcas</i> integral valorization. Biofuels, Bioproducts and Biorefining, 2018, 12, 577-585.	3.7	1
2	Enhancing Biodiesel Production Using Green Glycerol-Enriched Calcium Oxide Catalyst: An Optimization Study. Catalysis Letters, 2018, 148, 1169-1180.	2.6	12
3	Enzymatic butanolysis of coconut oil. Biorefinery approach. Fuel, 2017, 209, 141-149.	6.4	13
4	Renewable production of value-added jojobyl alcohols and biodiesel using a naturally-derived heterogeneous green catalyst. Fuel, 2016, 179, 332-338.	6.4	19
5	Enhancement of the jojobyl alcohols and biodiesel production using a renewable catalyst in a pressurized reactor. Energy Conversion and Management, 2016, 126, 1047-1053.	9.2	9
6	Jojoba oil: A state of the art review and future prospects. Energy Conversion and Management, 2016, 129, 293-304.	9.2	72
7	Effect of free fatty acids contents on biodiesel quality. Pilot plant studies. Fuel, 2016, 174, 54-62.	6.4	66
8	Biodiesel production from waste salmon oil: kinetic modeling, properties of methyl esters, and economic feasibility of a low capacity plant. Biofuels, Bioproducts and Biorefining, 2015, 9, 516-528.	3.7	11
9	Fatty acid alkyl esters and monounsaturated alcohols production from jojoba oil using short-chain alcohols for biorefinery concepts. Industrial Crops and Products, 2015, 69, 244-250.	5.2	19
10	A comparative study of the production of esters from Jatropha oil using different short-chain alcohols: Optimization and characterization. Fuel, 2015, 143, 183-188.	6.4	40
11	Kinetics of Jojoba oil methanolysis using a waste from fish industry as catalyst. Chemical Engineering Journal, 2015, 262, 640-647.	12.7	32
12	Jojoba oil biorefinery using a green catalyst. Part I: Simulation of the process. Biofuels, Bioproducts and Biorefining, 2015, 9, 129-138.	3.7	13
13	Jojoba oil biorefinery using a green catalyst. Part <scp>II</scp> : Feasibility study and economical assessment. Biofuels, Bioproducts and Biorefining, 2015, 9, 139-146.	3.7	9
14	Solvent-free lipase-catalyzed synthesis of a novel hydroxyl-fatty acid derivative of kojic acid. Enzyme and Microbial Technology, 2014, 55, 128-132.	3.2	26
15	Biodiesel production from biobutanol. Improvement of cold flow properties. Chemical Engineering Journal, 2014, 238, 234-241.	12.7	48
16	Biodiesel production optimization using \hat{I}^3 Al2O3 based catalysts. Energy, 2014, 73, 661-669.	8.8	22
17	Optimization of lipase-catalyzed synthesis of diglycerol monooleate by response surface methodology. Biomass and Bioenergy, 2014, 61, 179-186.	5.7	7
18	Influence of blending vegetable oil methyl esters on biodiesel fuel properties: Oxidative stability and cold flow properties. Energy, 2014, 65, 109-115.	8.8	105

#	Article	IF	CITATIONS
19	Optimization and oxidative stability of biodiesel production from rice bran oil. Renewable Energy, 2013, 53, 141-147.	8.9	58
20	Oxidation stability of biodiesel from different feedstocks: Influence of commercial additives and purification step. Fuel, 2013, 113, 50-58.	6.4	76
21	Long term storage stability of biodiesel: Influence of feedstock, commercial additives and purification step. Fuel Processing Technology, 2013, 116, 135-141.	7.2	54
22	Optimization of a two-step process for biodiesel production from Jatropha curcascrude oil. International Journal of Low-Carbon Technologies, 2012, 7, 331-337.	2.6	15
23	Enhancement of lipid accumulation in Scenedesmus obliquus by Optimizing CO2 and Fe3+ levels for biodiesel production. Bioresource Technology, 2012, 119, 429-432.	9.6	82
24	Synthesis of Biosurfactants: Enzymatic Esterification of Diglycerol and Oleic Acid. 1. Kinetic Modeling. Industrial & Engineering Chemistry Research, 2011, 50, 6609-6614.	3.7	20
25	Lipase-catalyzed synthesis of isosorbide monoricinoleate: Process optimization by response surface methodology. Bioresource Technology, 2010, 101, 8520-8525.	9.6	26
26	Biorefinery approach for coconut oil valorisation: A statistical study. Bioresource Technology, 2010, 101, 4006-4012.	9.6	31
27	Process Optimization for Biodiesel Production from Corn Oil and Its Oxidative Stability. International Journal of Chemical Engineering, 2010, 2010, 1-9.	2.4	33
28	Production of biodiesel from bioethanol and Brassica carinata oil: Oxidation stability study. Bioresource Technology, 2009, 100, 2234-2239.	9.6	143
29	Use of a Diffusion Model for Mono- and Bicomponent Anion-Exchange of Two Isoenzymes of Glucoamylase from Aspergillus niger in a Fixed Bed. Biotechnology Progress, 2008, 19, 1283-1291.	2.6	0
30	Synthesis of a green biosolvent: Isopropyl esters. Enzyme and Microbial Technology, 2007, 41, 533-538.	3.2	17
31	Long storage stability of biodiesel from vegetable and used frying oils. Fuel, 2007, 86, 2596-2602.	6.4	240
32	Optimisation of integrated biodiesel production. Part II: A study of the material balance. Bioresource Technology, 2007, 98, 1754-1761.	9.6	53
33	Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield. Bioresource Technology, 2007, 98, 1724-1733.	9.6	216
34	Optimization of Biodiesel Production from Jojoba Oil. Chemical Engineering Research and Design, 2007, 85, 378-382.	5.6	67
35	A comparative study of the production of ethyl esters from vegetable oils as a biodiesel fuel optimization by factorial design. Chemical Engineering Journal, 2007, 134, 93-99.	12.7	97
36	Biocatalytic processes for the production of fatty acid esters. Journal of Biotechnology, 2006, 124, 213-223.	3.8	11

#	Article	IF	CITATIONS
37	Functionalized Adsorbents for the Purification of Cephalosporin C and Deacetylcephalosporin C. Industrial & Engineering Chemistry Research, 2006, 45, 3230-3236.	3.7	4
38	Kinetics of Brassica carinata Oil Methanolysis. Energy & Samp; Fuels, 2006, 20, 1722-1726.	5.1	79
39	A Comparative Study of Vegetable Oils for Biodiesel Production in Spain. Energy & En	5.1	94
40	Factorial design for the evaluation of the influence of synthesis parameters upon the textural and structural properties of SBA-15 ordered materials. Microporous and Mesoporous Materials, 2006, 93, 331-343.	4.4	47
41	Pilot plant studies of biodiesel production using Brassica carinata as raw material. Catalysis Today, 2005, 106, 193-196.	4.4	79
42	Optimization of Brassica carinata oil methanolysis for biodiesel production. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 899-904.	1.9	71
43	Kinetics of Sunflower Oil Methanolysis. Industrial & Engineering Chemistry Research, 2005, 44, 5447-5454.	3.7	244
44	Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, 2004, 92, 297-305.	9.6	1,063
45	Adsorption of α-amylase in a fixed bed: Operating efficiency and kinetic modeling. AICHE Journal, 2003, 49, 2631-2641.	3.6	21
46	Application of an effective diffusion model to the adsorption of Aspartame on functionalised divinylbenzene–styrene macroporous resins. Journal of Food Engineering, 2003, 59, 319-325.	5.2	9
47	Adsorption Isotherms of Aspartame on Commercial and Chemically Modified Divinylbenzeneâ´'Styrene Resins at Different Temperatures. Journal of Chemical & Department of Chem	1.9	18
48	Kinetic modeling of the anion-exchange process of glucoamylases I and II from Aspergillus nigerin batch stirred tank. Separation Science and Technology, 2002, 37, 61-75.	2.5	1
49	Enzymatic synthesis of n-octyl (+)-2-methylbutanoate ester from racemic ($\hat{A}\pm$)-2-methylbutanoic acid by immobilized lipase: optimization by statistical analysis. Enzyme and Microbial Technology, 2002, 30, 110-115.	3.2	2
50	Optimization of the enzymatic esterification of diglycerol and lauric acid. Journal of Surfactants and Detergents, 2001, 4, 257-262.	2.1	12
51	Kinetic model for the esterification of oleic acid and cetyl alcohol using an immobilized lipase as catalyst. Chemical Engineering Science, 2000, 55, 1411-1423.	3.8	63
52	Kinetic modelling of the synthesis of 2-hydroxy-5-hexenyl 2-chlorobutyrate ester by an immobilised lipase. Biochemical Engineering Journal, 2000, 5, 185-190.	3.6	16
53	Modeling of the Adsorption of \hat{l}_{\pm} -Amylase in Batch Stirred Tank. Industrial & Engineering Chemistry Research, 2000, 39, 4320-4325.	3.7	10
54	Enzymatic synthesis of fatty esters. Enzyme and Microbial Technology, 1999, 25, 584-590.	3.2	66

#	Article	IF	CITATIONS
55	Enzymatic synthesis of fatty esters. Enzyme and Microbial Technology, 1999, 25, 591-597.	3.2	33
56	Adsorption equilibrium of α-amylase in aqueous solutions. AICHE Journal, 1999, 45, 761-768.	3.6	20
57	Adsorption isotherms of theAspergillus niger glucoamylases I and II on the anionic exchanger DEAE-Toyopearl 650. Journal of Chemical Technology and Biotechnology, 1999, 74, 199-203.	3.2	4
58	Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Industrial Crops and Products, 1998, 8, 29-35.	5.2	364
59	Reactions of olive oil and glycerol over immobilized lipases. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 657-660.	1.9	48
60	Statistical approach prediction of the textural properties of TiO2–Al2O3 mixed oxides modified by organic glycol-type polymers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 241, 90-98.	5.6	2
61	Selective Esterification of Glycerine to 1-Glycerol Monooleate. 2. Optimization Studies. Industrial & Samp; Engineering Chemistry Research, 1997, 36, 1529-1534.	3.7	34
62	Selective Esterification of Glycerine to 1-Glycerol Monooleate. 1. Kinetic Modeling. Industrial & Samp; Engineering Chemistry Research, 1997, 36, 1524-1528.	3.7	33
63	Optimization of a process for the synthesis of a sperm whale oil analogue. Chemical Engineering and Technology, 1997, 20, 287-292.	1.5	3
64	Isomerization of C8Aromatics over a Pt/Mordenite Catalyst. A Statistical Model. Industrial & Samp; Engineering Chemistry Research, 1996, 35, 3964-3972.	3.7	14
65	Kinetic modelling of esterification reactions catalysed by immobilized lipases. Chemical Engineering Science, 1996, 51, 2841-2846.	3.8	32
66	Enzymatic Synthesis of Myristyl Myristate. Estimation of Parameters and Optimization Of the Process. Biocatalysis and Biotransformation, 1996, 14, 67-85.	2.0	14
67	Optimization of the synthesis of a sperm whale oil analogue. Industrial Crops and Products, 1995, 4, 105-111.	5.2	9
68	Evaluation of Kinetic and Thermodynamic Parameters of Amino Acids on Modified Divinylbenzene-Polystyrene Resins Using a Liquid Chromatography Technique. Industrial & Engineering Chemistry Research, 1995, 34, 4486-4493.	3.7	12
69	Kinetic study of the synthesis ofn-octyl octanoate using cobalt chloride as catalyst. Chemical Engineering and Technology, 1994, 17, 210-215.	1.5	7
70	Control of porosity and surface area in TiO2—Al2O3 mixed oxides catalytic supports. A statistical approach. Applied Catalysis A: General, 1994, 118, 73-86.	4.3	19
71	Modelling and solving fixed-bed adsorption. Mathematical Methods in the Applied Sciences, 1993, 16, 533-544.	2.3	2
72	Modelling of the adsorption of Cephalosporin C on modified resins in a stirred tank. The Chemical Engineering Journal, 1993, 52, B71-B75.	0.3	19

#	Article	IF	CITATIONS
73	Enzymatic synthesis of an analogue of jojoba oil: Optimization by statistical analysis. Enzyme and Microbial Technology, 1993, 15, 607-611.	3.2	25
74	Optimisation of the synthesis of an analogue of jojoba oil using a fully central composite design. Canadian Journal of Chemical Engineering, 1993, 71, 485-488.	1.7	12
75	Kinetic analysis and modeling of the esterification of oleic acid and oleyl alcohol using cobalt chloride as catalyst. Industrial & Engineering Chemistry Research, 1992, 31, 1985-1988.	3.7	17
76	Formation of a jojoba oil analog by esterification of oleic acid using zeolites as catalyst. Zeolites, 1992, 12, 233-236.	0.5	61
77	Synthesis of oleyl oleate as a jojoba oil analog. JAOCS, Journal of the American Oil Chemists' Society, 1992, 69, 1150-1153.	1.9	35
78	Synthesis of esters of high molecular weight. An analog of jojoba oil. A statistical approach. Industrial & Engineering Chemistry Research, 1988, 27, 2179-2182.	3.7	32
79	Use of factorial design of experiments in the determination of adsorption equilibrium constants: Methyl iodide on charcoals. Journal of Chemical Technology and Biotechnology, 1987, 38, 143-151.	3.2	1
80	Purification of ϵâ€caprolactam by catalytic hydrogenation. A statistical approach. Canadian Journal of Chemical Engineering, 1982, 60, 319-323.	1.7	1
81	Analysis of the impurities in industrial É-caprolactam. Hypothesis of formation. Journal of Applied Polymer Science, 1981, 26, 3271-3282.	2.6	23