Junghoon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11629582/publications.pdf

Version: 2024-02-01

257450 361022 2,160 34 24 35 h-index citations g-index papers 35 35 35 2557 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Highly luminescent polyethylene glycol-passivated graphene quantum dots for light emitting diodes. RSC Advances, 2020, 10, 27418-27423.	3.6	14
2	Regioisomeric Polythiophene Derivatives: Synthesis and Structure-Property Relationships for Organic Electronic Devices. Macromolecular Research, 2020, 28, 772-781.	2.4	4
3	Dithienosilole- <i>co</i> -5-fluoro-2,1,3-benzothiadiazole-containing regioisomeric polymers for organic field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 8522-8526.	5.5	8
4	Furan-flanked diketopyrrolopyrrole-based chalcogenophene copolymers with siloxane hybrid side chains for organic field-effect transistors. Polymer Chemistry, 2019, 10, 2854-2862.	3.9	33
5	An Ultrahigh Mobility in Isomorphic Fluorobenzo[<i>c</i>][1,2,5]thiadiazoleâ€Based Polymers. Angewandte Chemie, 2018, 130, 13817-13822.	2.0	4
6	An Ultrahigh Mobility in Isomorphic Fluorobenzo[<i>c</i>][1,2,5]thiadiazoleâ€Based Polymers. Angewandte Chemie - International Edition, 2018, 57, 13629-13634.	13.8	43
7	A Role of Side-Chain Regiochemistry of Thienylene–Vinylene–Thienylene (TVT) in the Transistor Performance of Isomeric Polymers. Macromolecules, 2017, 50, 884-890.	4.8	49
8	High-Performance Furan-Containing Conjugated Polymer for Environmentally Benign Solution Processing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15652-15661.	8.0	46
9	Chlorinated 2,1,3-Benzothiadiazole-Based Polymers for Organic Field-Effect Transistors. Macromolecules, 2017, 50, 4649-4657.	4.8	33
10	Organic Transistors: Chemically Robust Ambipolar Organic Transistor Array Directly Patterned by Photolithography (Adv. Mater. 11/2017). Advanced Materials, 2017, 29, .	21.0	1
11	Chemically Robust Ambipolar Organic Transistor Array Directly Patterned by Photolithography. Advanced Materials, 2017, 29, 1605282.	21.0	59
12	Siloxane Side Chains: A Universal Tool for Practical Applications of Organic Field-Effect Transistors. Macromolecules, 2016, 49, 3739-3748.	4.8	58
13	A Roundabout Approach to Control Morphological Orientation and Solar ell Performance by Modulating Side hain Branching Position in Benzodithiopheneâ€Based Polymers. ChemPhysChem, 2015, 16, 1305-1314.	2.1	15
14	Siloxaneâ€Based Hybrid Semiconducting Polymers Prepared by Fluorideâ€Mediated Suzuki Polymerization. Angewandte Chemie - International Edition, 2015, 54, 4657-4660.	13.8	20
15	Dithienogermoleâ€Containing Smallâ€Molecule Solar Cells with 7.3% Efficiency: Inâ€Depth Study on the Effects of Heteroatom Substitution of Si with Ge. Advanced Energy Materials, 2015, 5, 1402044.	19.5	40
16	A Balanced Face-On to Edge-On Texture Ratio in Naphthalene Diimide-Based Polymers with Hybrid Siloxane Chains Directs Highly Efficient Electron Transport. Macromolecules, 2015, 48, 5179-5187.	4.8	82
17	<i>ε</i> â€Branched Flexible Side Chain Substituted Diketopyrrolopyrroleâ€Containing Polymers Designed for High Hole and Electron Mobilities. Advanced Functional Materials, 2015, 25, 247-254.	14.9	108
18	Synthesis of fluorinated analogues of a practical polymer TQ for improved open-circuit voltages in polymer solar cells. Polymer Chemistry, 2014, 5, 2540.	3.9	40

#	Article	IF	CITATIONS
19	Acceptor–acceptor type isoindigo-based copolymers for high-performance n-channel field-effect transistors. Chemical Communications, 2014, 50, 2180.	4.1	73
20	Fluorinated Benzothiadiazole (BT) Groups as a Powerful Unit for High-Performance Electron-Transporting Polymers. ACS Applied Materials & Electron-Transporting Polymers. ACS Applied Materials & Electron-Transporting Polymers.	8.0	53
21	Ambipolar Semiconducting Polymers with <i>i∈-</i> Spacer Linked Bis-Benzothiadiazole Blocks as Strong Accepting Units. Chemistry of Materials, 2014, 26, 4933-4942.	6.7	53
22	Visibleâ€Near Infrared Absorbing Polymers Containing Thienoisoindigo and Electronâ€Rich Units for Organic Transistors with Tunable Polarity. Advanced Functional Materials, 2013, 23, 5317-5325.	14.9	77
23	Boosting the Ambipolar Performance of Solution-Processable Polymer Semiconductors via Hybrid Side-Chain Engineering. Journal of the American Chemical Society, 2013, 135, 9540-9547.	13.7	460
24	Solution-Processable Ambipolar Diketopyrrolopyrrole–Selenophene Polymer with Unprecedentedly High Hole and Electron Mobilities. Journal of the American Chemical Society, 2012, 134, 20713-20721.	13.7	341
25	Organic Transistors: Inversion of Dominant Polarity in Ambipolar Polydiketopyrrolopyrrole with Thermally Removable Groups (Adv. Funct. Mater. 19/2012). Advanced Functional Materials, 2012, 22, 4182-4182.	14.9	1
26	Regioselective 1,2,3-bisazfulleroid: doubly N-bridged bisimino-PCBMs for polymer solar cells. Journal of Materials Chemistry, 2012, 22, 22958.	6.7	11
27	Swapping field-effect transistor characteristics in polymeric diketopyrrolopyrrole semiconductors: debut of an electron dominant transporting polymer. Journal of Materials Chemistry, 2012, 22, 1504-1510.	6.7	40
28	Inversion of Dominant Polarity in Ambipolar Polydiketopyrrolopyrrole with Thermally Removable Groups. Advanced Functional Materials, 2012, 22, 4128-4138.	14.9	87
29	Toward the Realization of A Practical Diketopyrrolopyrroleâ€Based Small Molecule for Improved Efficiency in Ternary BHJ Solar Cells. Macromolecular Rapid Communications, 2012, 33, 140-145.	3.9	39
30	A synthetic approach to a fullerene-rich dendron and its linear polymer via ring-opening metathesis polymerization. Chemical Communications, 2011, 47, 3078.	4.1	40
31	Highly reproducible organic field-effect transistor from pseudo 3-dimensional triphenylamine-based amorphous conjugated copolymer. Journal of Materials Chemistry, 2011, 21, 8528.	6.7	26
32	Ladder-type heteroacenepolymers bearing carbazole and thiophene ring units and their use in field-effect transistors and photovoltaic cells. Journal of Materials Chemistry, 2011, 21, 843-850.	6.7	48
33	Poly(diketopyrrolopyrroleâ€benzothiadiazole) with Ambipolarity Approaching 100% Equivalency. Advanced Functional Materials, 2011, 21, 1910-1916.	14.9	149
34	Ambipolar Transitors: Poly(diketopyrrolopyrrole-benzothiadiazole) with Ambipolarity Approaching 100% Equivalency (Adv. Funct. Mater. 10/2011). Advanced Functional Materials, 2011, 21, 1745-1745.	14.9	3