Wado Akamatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11628727/publications.pdf

Version: 2024-02-01

117625 168389 3,775 56 34 53 citations h-index g-index papers 57 57 57 6576 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Methods to Induce Small-Scale Differentiation of iPS Cells into Dopaminergic Neurons and to Detect Disease Phenotypes. Methods in Molecular Biology, 2021, , 271-279.	0.9	2
2	Differentiation of Midbrain from Human iPS Cells. Methods in Molecular Biology, 2021, 2322, 73-80.	0.9	3
3	Establishment of an in vitro model for analyzing mitochondrial ultrastructure in PRKN-mutated patient iPSC-derived dopaminergic neurons. Molecular Brain, 2021, 14, 58.	2.6	8
4	In vitro monitoring of HTR2A-positive neurons derived from human-induced pluripotent stem cells. Scientific Reports, 2021, 11, 15437.	3.3	2
5	Developmental dysregulation of excitatory-to-inhibitory GABA-polarity switch may underlie schizophrenia pathology: A monozygotic-twin discordant case analysis in human iPS cell-derived neurons. Neurochemistry International, 2021, 150, 105179.	3.8	9
6	Astrocytes Protect Human Dopaminergic Neurons from α-Synuclein Accumulation and Propagation. Journal of Neuroscience, 2020, 40, 8618-8628.	3.6	57
7	Identifying Therapeutic Agents for Amelioration of Mitochondrial Clearance Disorder in Neurons of Familial Parkinson Disease. Stem Cell Reports, 2020, 14, 1060-1075.	4.8	43
8	BRUPâ€1, an intracellular bilirubin modulator, exerts neuroprotective activity in a cellular Parkinson's disease model. Journal of Neurochemistry, 2020, 155, 81-97.	3.9	10
9	Variants in saposin D domain of prosaposin gene linked to Parkinson's disease. Brain, 2020, 143, 1190-1205.	7.6	72
10	Translational derepression of Elavl4Âisoforms at their alternative 5′ UTRs determines neuronal development. Nature Communications, 2020, 11, 1674.	12.8	40
11	Direct induction of neural cells from somatic cells. , 2020, , 179-185.		O
12	Mutations in CHCHD2 cause α-synuclein aggregation. Human Molecular Genetics, 2019, 28, 3895-3911.	2.9	48
13	Induced Pluripotent Stem Cells Reprogrammed with Three Inhibitors Show Accelerated Differentiation Potentials with High Levels of 2-Cell Stage Marker Expression. Stem Cell Reports, 2019, 12, 305-318.	4.8	10
14	Cell-specific overexpression of COMT in dopaminergic neurons of Parkinson's disease. Brain, 2019, 142, 1675-1689.	7.6	13
15	Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson's disease-like motor dysfunction. Molecular Brain, 2018, 11, 6.	2.6	43
16	Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5815-E5823.	7.1	104
17	Rostrocaudal Areal Patterning of Human PSC-Derived Cortical Neurons by FGF8 Signaling. ENeuro, 2018, 5, ENEURO.0368-17.2018.	1.9	11
18	Modeling Neurological Diseases with Induced Pluripotent Stem Cells. Juntendo Medical Journal, 2018, 64, 450-453.	0.1	0

#	Article	IF	CITATIONS
19	Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons. Biochemical and Biophysical Research Communications, 2017, 483, 88-93.	2.1	55
20	Brief exposure to small molecules allows induction of mouse embryonic fibroblasts into neural crestâ€ike precursors. FEBS Letters, 2017, 591, 590-602.	2.8	11
21	Assessment of Mitophagy in iPS Cell-Derived Neurons. Methods in Molecular Biology, 2017, 1759, 59-67.	0.9	5
22	Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine. Schizophrenia Research, 2017, 181, 75-82.	2.0	47
23	Generation of neural cells using iPSCs from sleep bruxism patients with 5-HT2A polymorphism. Journal of Prosthodontic Research, 2017, 61, 242-250.	2.8	12
24	Escape from Pluripotency via Inhibition of TGF- \hat{l}^2 /BMP and Activation of Wnt Signaling Accelerates Differentiation and Aging in hPSC Progeny Cells. Stem Cell Reports, 2017, 9, 1675-1691.	4.8	54
25	Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Human Molecular Genetics, 2017, 26, 3172-3185.	2.9	42
26	CHARGE syndrome modeling using patient-iPSCs reveals defective migration of neural crest cells harboring CHD7 mutations. ELife, 2017, 6, .	6.0	52
27	Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Disease Modeling. Juntendo Medical Journal, 2017, 63, 37-41.	0.1	0
28	Differential X Chromosome Inactivation Patterns during the Propagation of Human Induced Pluripotent Stem Cells. Keio Journal of Medicine, 2016, 66, 1-8.	1.1	6
29	Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines. Molecular Brain, 2016, 9, 88.	2.6	21
30	Establishment of InÂVitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2016, 6, 496-510.	4.8	74
31	Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling. Stem Cell Reports, 2016, 6, 422-435.	4.8	56
32	Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes. Stem Cell Reports, 2015, 5, 1010-1022.	4.8	84
33	Differentiation of multipotent neural stem cells derived from Rett syndrome patients is biased toward the astrocytic lineage. Molecular Brain, 2015, 8, 31.	2.6	77
34	Direct Induction of Neural Stem Cells from Somatic Cells. , 2015, , 103-106.		0
35	Utility of Scalp Hair Follicles as a Novel Source of Biomarker Genes for Psychiatric Illnesses. Biological Psychiatry, 2015, 78, 116-125.	1.3	43
36	I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3β signaling pathway. Human Molecular Genetics, 2015, 24, 4879-4900.	2.9	56

3

#	Article	IF	Citations
37	Prenatal Deletion of the RNA-Binding Protein HuD Disrupts Postnatal Cortical Circuit Maturation and Behavior. Journal of Neuroscience, 2014, 34, 3674-3686.	3.6	62
38	Regeneration of the damaged central nervous system through reprogramming technology: Basic concepts and potential application for cell replacement therapy. Experimental Neurology, 2014, 260, 12-18.	4.1	30
39	Increased L1 Retrotransposition in the Neuronal Genome in Schizophrenia. Neuron, 2014, 81, 306-313.	8.1	277
40	The RNA-binding Protein HuD Regulates Autophagosome Formation in Pancreatic \hat{l}^2 Cells by Promoting Autophagy-related Gene 5 Expression. Journal of Biological Chemistry, 2014, 289, 112-121.	3.4	37
41	Reprogramming non-human primate somatic cells into functional neuronal cells by defined factors. Molecular Brain, 2014, 7, 24.	2.6	26
42	Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes. Stem Cell Reports, 2014, 2, 648-661.	4.8	100
43	A human Dravet syndrome model from patient induced pluripotent stem cells. Molecular Brain, 2013, 6, 19.	2.6	111
44	Human Induced Pluripotent Stem Cell–Derived Ectodermal Precursor Cells Contribute to Hair Follicle Morphogenesis In Vivo. Journal of Investigative Dermatology, 2013, 133, 1479-1488.	0.7	72
45	Generation of Human Melanocytes from Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2013, 989, 193-215.	0.9	20
46	Enhanced Aggregation of Androgen Receptor in Induced Pluripotent Stem Cell-derived Neurons from Spinal and Bulbar Muscular Atrophy. Journal of Biological Chemistry, 2013, 288, 8043-8052.	3.4	45
47	Comparison of Genomic and Epigenomic Expression in Monozygotic Twins Discordant for Rett Syndrome. PLoS ONE, 2013, 8, e66729.	2.5	56
48	RNA-Binding Protein HuD Controls Insulin Translation. Molecular Cell, 2012, 45, 826-835.	9.7	92
49	Mitochondrial dysfunction associated with increased oxidative stress and \hat{l}_{\pm} -synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Molecular Brain, 2012, 5, 35.	2.6	333
50	Establishment of Induced Pluripotent Stem Cells from Centenarians for Neurodegenerative Disease Research. PLoS ONE, 2012, 7, e41572.	2.5	72
51	Neural Stem Cells Directly Differentiated from Partially Reprogrammed Fibroblasts Rapidly Acquire Gliogenic Competency. Stem Cells, 2012, 30, 1109-1119.	3.2	84
52	Generation of Human Melanocytes from Induced Pluripotent Stem Cells. PLoS ONE, 2011, 6, e16182.	2.5	102
53	Modeling familial Alzheimer's disease with induced pluripotent stem cells. Human Molecular Genetics, 2011, 20, 4530-4539.	2.9	527
54	Suppression of Oct4 by Germ Cell Nuclear Factor Restricts Pluripotency and Promotes Neural Stem Cell Development in the Early Neural Lineage. Journal of Neuroscience, 2009, 29, 2113-2124.	3.6	64

#	Article	IF	CITATIONS
55	The RNA-binding protein HuD regulates neuronal cell identity and maturation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4625-4630.	7.1	196
56	Nestin-EGFP Transgenic Mice: Visualization of the Self-Renewal and Multipotency of CNS Stem Cells. Molecular and Cellular Neurosciences, 2001, 17, 259-273.	2.2	298