
Wado Akamatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11628727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling familial Alzheimer's disease with induced pluripotent stem cells. Human Molecular Genetics, 2011, 20, 4530-4539.	2.9	527
2	Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Molecular Brain, 2012, 5, 35.	2.6	333
3	Nestin-EGFP Transgenic Mice: Visualization of the Self-Renewal and Multipotency of CNS Stem Cells. Molecular and Cellular Neurosciences, 2001, 17, 259-273.	2.2	298
4	Increased L1 Retrotransposition in the Neuronal Genome in Schizophrenia. Neuron, 2014, 81, 306-313.	8.1	277
5	The RNA-binding protein HuD regulates neuronal cell identity and maturation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4625-4630.	7.1	196
6	A human Dravet syndrome model from patient induced pluripotent stem cells. Molecular Brain, 2013, 6, 19.	2.6	111
7	Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson's disease. Proceedings of the United States of America, 2018, 115, E5815-E5823.	7.1	104
8	Generation of Human Melanocytes from Induced Pluripotent Stem Cells. PLoS ONE, 2011, 6, e16182.	2.5	102
9	Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes. Stem Cell Reports, 2014, 2, 648-661.	4.8	100
10	RNA-Binding Protein HuD Controls Insulin Translation. Molecular Cell, 2012, 45, 826-835.	9.7	92
11	Neural Stem Cells Directly Differentiated from Partially Reprogrammed Fibroblasts Rapidly Acquire Gliogenic Competency. Stem Cells, 2012, 30, 1109-1119.	3.2	84
12	Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes. Stem Cell Reports, 2015, 5, 1010-1022.	4.8	84
13	Differentiation of multipotent neural stem cells derived from Rett syndrome patients is biased toward the astrocytic lineage. Molecular Brain, 2015, 8, 31.	2.6	77
14	Establishment of InÂVitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2016, 6, 496-510.	4.8	74
15	Establishment of Induced Pluripotent Stem Cells from Centenarians for Neurodegenerative Disease Research. PLoS ONE, 2012, 7, e41572.	2.5	72
16	Human Induced Pluripotent Stem Cell–Derived Ectodermal Precursor Cells Contribute to Hair Follicle Morphogenesis In Vivo. Journal of Investigative Dermatology, 2013, 133, 1479-1488.	0.7	72
17	Variants in saposin D domain of prosaposin gene linked to Parkinson's disease. Brain, 2020, 143, 1190-1205.	7.6	72
18	Suppression of Oct4 by Germ Cell Nuclear Factor Restricts Pluripotency and Promotes Neural Stem Cell Development in the Early Neural Lineage. Journal of Neuroscience, 2009, 29, 2113-2124.	3.6	64

Wado Akamatsu

#	Article	IF	CITATIONS
19	Prenatal Deletion of the RNA-Binding Protein HuD Disrupts Postnatal Cortical Circuit Maturation and Behavior. Journal of Neuroscience, 2014, 34, 3674-3686.	3.6	62
20	Astrocytes Protect Human Dopaminergic Neurons from α-Synuclein Accumulation and Propagation. Journal of Neuroscience, 2020, 40, 8618-8628.	3.6	57
21	I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3β signaling pathway. Human Molecular Genetics, 2015, 24, 4879-4900.	2.9	56
22	Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling. Stem Cell Reports, 2016, 6, 422-435.	4.8	56
23	Comparison of Genomic and Epigenomic Expression in Monozygotic Twins Discordant for Rett Syndrome. PLoS ONE, 2013, 8, e66729.	2.5	56
24	Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons. Biochemical and Biophysical Research Communications, 2017, 483, 88-93.	2.1	55
25	Escape from Pluripotency via Inhibition of TCF-β/BMP and Activation of Wnt Signaling Accelerates Differentiation and Aging in hPSC Progeny Cells. Stem Cell Reports, 2017, 9, 1675-1691.	4.8	54
26	CHARGE syndrome modeling using patient-iPSCs reveals defective migration of neural crest cells harboring CHD7 mutations. ELife, 2017, 6, .	6.0	52
27	Mutations in CHCHD2 cause α-synuclein aggregation. Human Molecular Genetics, 2019, 28, 3895-3911.	2.9	48
28	Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine. Schizophrenia Research, 2017, 181, 75-82.	2.0	47
29	Enhanced Aggregation of Androgen Receptor in Induced Pluripotent Stem Cell-derived Neurons from Spinal and Bulbar Muscular Atrophy. Journal of Biological Chemistry, 2013, 288, 8043-8052.	3.4	45
30	Utility of Scalp Hair Follicles as a Novel Source of Biomarker Genes for Psychiatric Illnesses. Biological Psychiatry, 2015, 78, 116-125.	1.3	43
31	Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson's disease-like motor dysfunction. Molecular Brain, 2018, 11, 6.	2.6	43
32	Identifying Therapeutic Agents for Amelioration of Mitochondrial Clearance Disorder in Neurons of Familial Parkinson Disease. Stem Cell Reports, 2020, 14, 1060-1075.	4.8	43
33	Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Human Molecular Genetics, 2017, 26, 3172-3185.	2.9	42
34	Translational derepression of Elavl4Âisoforms at their alternative 5′ UTRs determines neuronal development. Nature Communications, 2020, 11, 1674.	12.8	40
35	The RNA-binding Protein HuD Regulates Autophagosome Formation in Pancreatic β Cells by Promoting Autophagy-related Gene 5 Expression. Journal of Biological Chemistry, 2014, 289, 112-121.	3.4	37
36	Regeneration of the damaged central nervous system through reprogramming technology: Basic concepts and potential application for cell replacement therapy. Experimental Neurology, 2014, 260, 12-18.	4.1	30

Wado Akamatsu

#	Article	IF	CITATIONS
37	Reprogramming non-human primate somatic cells into functional neuronal cells by defined factors. Molecular Brain, 2014, 7, 24.	2.6	26
38	Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines. Molecular Brain, 2016, 9, 88.	2.6	21
39	Generation of Human Melanocytes from Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2013, 989, 193-215.	0.9	20
40	Cell-specific overexpression of COMT in dopaminergic neurons of Parkinson's disease. Brain, 2019, 142, 1675-1689.	7.6	13
41	Generation of neural cells using iPSCs from sleep bruxism patients with 5-HT2A polymorphism. Journal of Prosthodontic Research, 2017, 61, 242-250.	2.8	12
42	Brief exposure to small molecules allows induction of mouse embryonic fibroblasts into neural crestâ€ike precursors. FEBS Letters, 2017, 591, 590-602.	2.8	11
43	Rostrocaudal Areal Patterning of Human PSC-Derived Cortical Neurons by FGF8 Signaling. ENeuro, 2018, 5, ENEURO.0368-17.2018.	1.9	11
44	Induced Pluripotent Stem Cells Reprogrammed with Three Inhibitors Show Accelerated Differentiation Potentials with High Levels of 2-Cell Stage Marker Expression. Stem Cell Reports, 2019, 12, 305-318.	4.8	10
45	BRUPâ€1, an intracellular bilirubin modulator, exerts neuroprotective activity in a cellular Parkinson's disease model. Journal of Neurochemistry, 2020, 155, 81-97.	3.9	10
46	Developmental dysregulation of excitatory-to-inhibitory GABA-polarity switch may underlie schizophrenia pathology: A monozygotic-twin discordant case analysis in human iPS cell-derived neurons. Neurochemistry International, 2021, 150, 105179.	3.8	9
47	Establishment of an in vitro model for analyzing mitochondrial ultrastructure in PRKN-mutated patient iPSC-derived dopaminergic neurons. Molecular Brain, 2021, 14, 58.	2.6	8
48	Differential X Chromosome Inactivation Patterns during the Propagation of Human Induced Pluripotent Stem Cells. Keio Journal of Medicine, 2016, 66, 1-8.	1.1	6
49	Assessment of Mitophagy in iPS Cell-Derived Neurons. Methods in Molecular Biology, 2017, 1759, 59-67.	0.9	5
50	Differentiation of Midbrain from Human iPS Cells. Methods in Molecular Biology, 2021, 2322, 73-80.	0.9	3
51	Methods to Induce Small-Scale Differentiation of iPS Cells into Dopaminergic Neurons and to Detect Disease Phenotypes. Methods in Molecular Biology, 2021, , 271-279.	0.9	2
52	In vitro monitoring of HTR2A-positive neurons derived from human-induced pluripotent stem cells. Scientific Reports, 2021, 11, 15437.	3.3	2
53	Direct Induction of Neural Stem Cells from Somatic Cells. , 2015, , 103-106.		0
54	Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Disease Modeling. Juntendo Medical Journal, 2017, 63, 37-41.	0.1	0

0

#	Article	IF	CITATIONS
55	Modeling Neurological Diseases with Induced Pluripotent Stem Cells. Juntendo Medical Journal, 2018, 64, 450-453.	0.1	0

56 Direct induction of neural cells from somatic cells. , 2020, , 179-185.