
Congxiao Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11628347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Naturally Nitrogen and Calcium-Doped Nanoporous Carbon from Pine Cone with Superior CO ₂ Capture Capacities. ACS Sustainable Chemistry and Engineering, 2016, 4, 1050-1057.	6.7	78
2	Amylose-Derived Macrohollow Core and Microporous Shell Carbon Spheres as Sulfur Host for Superior Lithium–Sulfur Battery Cathodes. ACS Applied Materials & Interfaces, 2017, 9, 10717-10729.	8.0	77
3	Porosity Engineering of MOFâ€Based Materials for Electrochemical Energy Storage. Advanced Energy Materials, 2021, 11, 2100154.	19.5	75
4	Naturally derived porous carbon with selective metal- and/or nitrogen-doping for efficient CO ₂ capture and oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 5212-5222.	10.3	65
5	Mg-based composites for enhanced hydrogen storage performance. International Journal of Hydrogen Energy, 2019, 44, 338-344.	7.1	51
6	A hybrid Si@FeSi _y /SiO _x anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis. Journal of Materials Chemistry A, 2015, 3, 10767-10776.	10.3	50
7	A mechanochemical synthesis of submicron-sized Li ₂ S and a mesoporous Li ₂ S/C hybrid for high performance lithium/sulfur battery cathodes. Journal of Materials Chemistry A, 2017, 5, 6471-6482.	10.3	44
8	TiO2 decorated porous carbonaceous network structures offer confinement, catalysis and thermal conductivity for effective hydrogen storage of LiBH4. Chemical Engineering Journal, 2021, 407, 127156.	12.7	39
9	Nanoâ€structured MgH ₂ catalyzed by TiC nanoparticles for hydrogen storage. Journal of Chemical Technology and Biotechnology, 2011, 86, 69-74.	3.2	37
10	Multinuclear Zinc Pentafluorobenzene Carboxylates: Synthesis, Characterization, and Hydrogen Storage Capability. Organometallics, 2010, 29, 6129-6132.	2.3	24
11	Synthesis of nanostructured carbons by the microwave plasma cracking of methane. Carbon, 2013, 51, 243-248.	10.3	24
12	Effective Ensemble of Pt Single Atoms and Clusters over the (Ni,Co)(OH) ₂ Substrate Catalyzes Highly Selective, Efficient, and Stable Hydrogenation Reactions. ACS Catalysis, 2022, 12, 8104-8115.	11.2	20
13	Rational Design of Ptâ^'Pdâ^'Ni Trimetallic Nanocatalysts for Roomâ€Temperature Benzaldehyde and Styrene Hydrogenation. Chemistry - an Asian Journal, 2021, 16, 2298-2306.	3.3	7
14	Electrochemical Energy Storage: Porosity Engineering of MOFâ€Based Materials for Electrochemical Energy Storage (Adv. Energy Mater. 20/2021). Advanced Energy Materials, 2021, 11, 2170078.	19.5	4
15	CO ₂ Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor. Journal of Nanomaterials, 2015, 2015, 1-6.	2.7	0