Shigenobu Yonemura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11627214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs. Cell Stem Cell, 2012, 10, 771-785.	11.1	1,243
2	Self-Organized Formation of Polarized Cortical Tissues from ESCs and Its Active Manipulation by ExtrinsicASignals. Cell Stem Cell, 2008, 3, 519-532.	11.1	1,216
3	α-Catenin as a tension transducer that induces adherens junction development. Nature Cell Biology, 2010, 12, 533-542.	10.3	864
4	Rho-Kinase Phosphorylates COOH-terminal Threonines of Ezrin/Radixin/Moesin (ERM) Proteins and Regulates Their Head-to-Tail Association. Journal of Cell Biology, 1998, 140, 647-657.	5.2	788
5	Hippo pathway regulation by cell morphology and stress fibers. Development (Cambridge), 2011, 138, 3907-3914.	2.5	707
6	<i>Clostridium perfringens</i> Enterotoxin Fragment Removes Specific Claudins from Tight Junction Strands. Journal of Cell Biology, 1999, 147, 195-204.	5.2	592
7	Ezrin/Radixin/Moesin (ERM) Proteins Bind to a Positively Charged Amino Acid Cluster in the Juxta-Membrane Cytoplasmic Domain of CD44, CD43, and ICAM-2. Journal of Cell Biology, 1998, 140, 885-895.	5.2	544
8	Differentiation of embryonic stem cells is induced by GATA factors. Genes and Development, 2002, 16, 784-789.	5.9	460
9	Self-formation of functional adenohypophysis in three-dimensional culture. Nature, 2011, 480, 57-62.	27.8	441
10	Cortical Actin Organization: Lessons from ERM (Ezrin/Radixin/Moesin) Proteins. Journal of Biological Chemistry, 1999, 274, 34507-34510.	3.4	419
11	Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO Journal, 2011, 30, 2325-2335.	7.8	376
12	Molecular linkage between cadherins and actin filaments in cell—cell adherens junctions. Current Opinion in Cell Biology, 1992, 4, 834-839.	5.4	346
13	Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nature Genetics, 2002, 31, 320-325.	21.4	298
14	ERM proteins: head-to-tail regulation of actin-plasma membrane interaction. Trends in Biochemical Sciences, 1997, 22, 53-58.	7.5	292
15	Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E81-90.	7.1	268
16	Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Current Biology, 1999, 9, 1259-S3.	3.9	242
17	HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO Journal, 2004, 23, 4297-4306.	7.8	221
18	Direct Involvement of Ezrin/Radixin/Moesin (ERM)-binding Membrane Proteins in the Organization of Microvilli in Collaboration with Activated ERM Proteins. Journal of Cell Biology, 1999, 145, 1497-1509.	5.2	196

Shigenobu Yonemura

#	Article	IF	CITATIONS
19	Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. Journal of Cell Science, 2002, 115, 2569-80.	2.0	189
20	Cadherin–actin interactions at adherens junctions. Current Opinion in Cell Biology, 2011, 23, 515-522.	5.4	162
21	ERM (Ezrin/Radixin/Moesin)-based Molecular Mechanism of Microvillar Breakdown at an Early Stage of Apoptosis. Journal of Cell Biology, 1997, 139, 749-758.	5.2	154
22	Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Experimental Cell Research, 2006, 312, 1637-1650.	2.6	154
23	Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nature Communications, 2016, 7, 10351.	12.8	153
24	Differential behavior of E-cadherin and occludin in their colocalization with ZO-1 during the establishment of epithelial cell polarity. , 1999, 179, 115-125.		151
25	Normal Development of Mice and Unimpaired Cell Adhesion/Cell Motility/Actin-based Cytoskeleton without Compensatory Up-regulation of Ezrin or Radixin in Moesin Gene Knockout. Journal of Biological Chemistry, 1999, 274, 2315-2321.	3.4	147
26	Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex. EMBO Journal, 2003, 22, 502-514.	7.8	145
27	Regulation of Myosin II Dynamics by Phosphorylation and Dephosphorylation of Its Light Chain in Epithelial Cells. Molecular Biology of the Cell, 2007, 18, 605-616.	2.1	136
28	Establishment of Immunodeficient Retinal Degeneration Model Mice and Functional Maturation of Human ESC-Derived Retinal Sheets after Transplantation. Stem Cell Reports, 2018, 10, 1059-1074.	4.8	87
29	Force-dependent allostery of the α-catenin actin-binding domain controls adherens junction dynamics and functions. Nature Communications, 2018, 9, 5121.	12.8	86
30	Mechano-adaptive sensory mechanism of α-catenin under tension. Scientific Reports, 2016, 6, 24878.	3.3	55
31	Differential Sensitivity of Epithelial Cells to Extracellular Matrix in Polarity Establishment. PLoS ONE, 2014, 9, e112922.	2.5	36
32	Afadin regulates actomyosin organization through αE-catenin at adherens junctions. Journal of Cell Biology, 2020, 219, .	5.2	31
33	A mechanism of mechanotransduction at the cellâ€cell interface. BioEssays, 2011, 33, 732-736.	2.5	25
34	Real-time TIRF observation of vinculin recruitment to stretched α-catenin by AFM. Scientific Reports, 2018, 8, 1575.	3.3	21
35	Apical membrane and junctional complex formation during simple epithelial cell differentiation of F9 cells. Genes To Cells, 2005, 10, 1065-1080.	1.2	20
36	Actin filament association at adherens junctions. Journal of Medical Investigation, 2017, 64, 14-19.	0.5	19

Shigenobu Yonemura

#	Article	IF	CITATIONS
37	The forceâ€sensing device region of αâ€catenin is an intrinsically disordered segment in the absence of intramolecular stabilization of the autoinhibitory form. Genes To Cells, 2018, 23, 370-385.	1.2	15
38	Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool. PLoS ONE, 2016, 11, e0158282.	2.5	15
39	Vinculin is critical for the robustness of the epithelial cell sheet paracellular barrier for ions. Life Science Alliance, 2019, 2, e201900414.	2.8	13
40	Medaka and zebrafish <i>contactin1</i> mutants as a model for understanding neural circuits for motor coordination. Genes To Cells, 2017, 22, 723-741.	1.2	10
41	Appropriate tension sensitivity of α-catenin ensures rounding morphogenesis of epithelial spheroids. Cell Structure and Function, 2022, 47, 55-73.	1.1	1
42	Tension as Important Information for Signal Transduction at Cell-cell Adhesion. Seibutsu Butsuri, 2011, 51, 162-167.	0.1	0