Raul Payri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1162557/publications.pdf

Version: 2024-02-01

		61984	ç	01884
186	6,948	43		69
papers	citations	h-index		g-index
187	187	187		1960
all docs	docs citations	times ranked		citing authors

#	Article	lF	Citations
1	ECN Spray D visualization of the spray interaction with a transparent wall under engine-like conditions, Part II: Impinging spray combustion. Fuel, 2022, 308, 121964.	6.4	11
2	Spray characteristics and penetration of the human cough, and the effectiveness of masks to prevent its dispersion. Building and Environment, 2022, 211, 108584.	6.9	2
3	Transient nozzle flow analysis and near field characterization of gasoline direct fuel injector using Large Eddy Simulation. International Journal of Multiphase Flow, 2022, 148, 103920.	3.4	10
4	Study of the hydraulic characteristics of two injectors fed with different fuels in a GDI system. Fuel, 2022, 317, 123196.	6.4	1
5	The role of hydrogen for future internal combustion engines. International Journal of Engine Research, 2022, 23, 529-540.	2.3	95
6	Analysis of spray/wall impingement using an ECN single-hole injector and a controlled-temperature wall under realistic engine conditions. Applied Thermal Engineering, 2022, 208, 118167.	6.0	11
7	Development of an Oxy-Fuel Combustion System in a Compression-Ignition Engine for Ultra-Low Emissions Powerplants Using CFD and Evolutionary Algorithms. Applied Sciences (Switzerland), 2022, 12, 7104.	2.5	5
8	Measurements of the mass allocation for multiple injection strategies using the rate of injection and momentum flux signals. International Journal of Engine Research, 2021, 22, 1180-1195.	2.3	13
9	Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomena. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	1.6	3
10	The effects of injector geometry and operating conditions on spray mass, momentum and development using high-pressure gasoline. Fuel, 2021, 294, 120468.	6.4	9
11	High-Speed Infrared Measurement of Injector Tip Temperature during Diesel Engine Operation. Energies, 2021, 14, 4584.	3.1	4
12	Understanding the effect of inter-jet spacing on lift-off length and ignition delay. Combustion and Flame, 2021, 230, 111423.	5.2	2
13	Using momentum flux measurements to determine the injection rate of a commercial Urea Water Solution injector. Flow Measurement and Instrumentation, 2021, 80, 101999.	2.0	4
14	Numerical Analysis of Urea to Ammonia Conversion in Automotive Selective Catalytic Reduction Realistic Conditions. Industrial & Engineering Chemistry Research, 2021, 60, 14329-14340.	3.7	6
15	Numerical Analysis of GDI Flash Boiling Sprays Using Different Fuels. Energies, 2021, 14, 5925.	3.1	6
16	Combustion system optimization for the integration of e-fuels (Oxymethylene Ether) in compression ignition engines. Fuel, 2021, 305, 121580.	6.4	16
17	IJER editorial: The future of the internal combustion engine. International Journal of Engine Research, 2020, 21, 3-10.	2.3	457
18	Quantitative analysis of dribble volumes and rates using three-dimensional reconstruction of X-ray and diffused back-illumination images of diesel sprays. International Journal of Engine Research, 2020, 21, 43-54.	2.3	12

#	Article	IF	CITATIONS
19	Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part II: Model validation, results of the simulations and discussion. Fuel, 2020, 260, 115663.	6.4	15
20	Engine combustion network special issue. International Journal of Engine Research, 2020, 21, 11-14.	2.3	6
21	Influence of aging of a diesel injector on multiple injection strategies. Applied Thermal Engineering, 2020, 181, 115891.	6.0	8
22	Analysis of the Influence of Diesel Spray Injection on the Ignition and Soot Formation in Multiple Injection Strategy. Energies, 2020, 13, 3505.	3.1	9
23	Computational Study of Urea–Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions. Industrial & SCR-like C	3.7	8
24	Transient nozzle flow simulations of gasoline direct fuel injectors. Applied Thermal Engineering, 2020, 175, 115356.	6.0	9
25	Nozzle rate of injection estimation from hole to hole momentum flux data with different fossil and renewable fuels. Fuel, 2020, 279, 118404.	6.4	9
26	Parametrical study of the dispersion of an alternative fire suppression agent through a real-size extinguisher system nozzle under realistic aircraft cargo cabin conditions. Chemical Engineering Research and Design, 2020, 141, 110-122.	5.6	14
27	Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234, 1788-1810.	1.3	6
28	Study of evaporative diesel spray interaction in multiple injections using optical diagnostics. Applied Thermal Engineering, 2020, 176, 115402.	6.0	16
29	Study of turbulence in atomizing liquid jets. International Journal of Multiphase Flow, 2020, 129, 103328.	3.4	11
30	Impact of counter-bore nozzle on the combustion process and exhaust emissions for light-duty diesel engine application. International Journal of Engine Research, 2019, 20, 46-57.	2.3	21
31	Analysis of counterbore effect in five diesel common rail injectors. Experimental Thermal and Fluid Science, 2019, 107, 69-78.	2.7	9
32	Investigation of the urea-water solution atomization process in engine exhaust-like conditions. Experimental Thermal and Fluid Science, 2019, 108, 75-84.	2.7	24
33	Experimental study of the influence of the fuel and boundary conditions over the soot formation in multi-hole diesel injectors using high-speed color diffused back-illumination technique. Applied Thermal Engineering, 2019, 158, 113746.	6.0	17
34	One-dimensional modeling of the interaction between close-coupled injection events for a ballistic solenoid injector. International Journal of Engine Research, 2019, 20, 452-469.	2.3	18
35	Rate of injection modelling for gasoline direct injectors. Energy Conversion and Management, 2018, 166, 424-432.	9.2	25
36	Assessing the capability of conventional in-cylinder insulation materials in achieving temperature swing engine performance benefits. International Journal of Engine Research, 2018, 19, 599-612.	2.3	24

#	Article	IF	CITATIONS
37	Experimental investigation of the effect of orifices inclination angle in multihole diesel injector nozzles. Part 2 $\hat{a} \in \mathbb{C}$ Spray characteristics. Fuel, 2018, 213, 215-221.	6.4	18
38	Analysis of the effects of wall temperature swing on reciprocating internal combustion engine processes. International Journal of Engine Research, 2018, 19, 461-473.	2.3	32
39	EFFECT OF HIGH INJECTION PRESSURES AND AMBIENT GAS PROPERTIES OVER THE MACROSCOPIC CHARACTERISTICS OF THE DIESEL SPRAY ON MULTI-HOLE NOZZLES. Atomization and Sprays, 2018, 28, 1145-1160.	0.8	6
40	Experimental and analytical study on vapor phase and liquid penetration for a high pressure diesel injector. Applied Thermal Engineering, 2018, 137, 721-728.	6.0	17
41	Effect of Injection Rate Shaping over Diesel Spray Development in Non-Reacting Evaporative Conditions. Proceedings, 2017, , 133-152.	0.3	2
42	The effect of nozzle geometry over ignition delay and flame lift-off of reacting direct-injection sprays for three different fuels. Fuel, 2017, 199, 76-90.	6.4	31
43	Numerical simulation of needle movement nozzle flow coupled with spray for a diesel injector using an Eulerian spray atomization model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 2585-2592.	1.6	4
44	X-ray radiography of cavitation in a beryllium alloy nozzle. International Journal of Engine Research, 2017, 18, 39-50.	2.3	16
45	Using a one-dimensional spray model to improve liquid length and ignition delay estimations for diesel flames. Applied Thermal Engineering, 2017, 124, 1090-1102.	6.0	9
46	Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering. International Journal of Multiphase Flow, 2017, 92, 131-139.	3.4	53
47	A new approach to compute temperature in a liquid-gas mixture. Application to study the effect of wall nozzle temperature on a Diesel injector. International Journal of Heat and Fluid Flow, 2017, 68, 79-86.	2.4	11
48	Internal and near nozzle measurements of Engine Combustion Network "Spray G―gasoline direct injectors. Experimental Thermal and Fluid Science, 2017, 88, 608-621.	2.7	63
49	Rate of injection measurements of a direct-acting piezoelectric injector for different operating temperatures. Energy Conversion and Management, 2017, 154, 387-393.	9.2	20
50	Differences between single and double-pass schlieren imaging on diesel vapor spray characteristics. Applied Thermal Engineering, 2017, 125, 220-231.	6.0	28
51	Optimization of spray break-up CFD simulations by combining \hat{l} £-Y Eulerian atomization model with a response surface methodology under diesel engine-like conditions (ECN Spray A). Computers and Fluids, 2017, 156, 9-20.	2.5	16
52	Thermo- and Fluid-Dynamic Processes in Direct Injection Engines: THIESEL 2016 Special Issue. International Journal of Engine Research, 2017, 18, 3-5.	2.3	1
53	ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis. Applied Thermal Engineering, 2017, 112, 304-316.	6.0	92
54	Methodology for Phase Doppler Anemometry Measurements on a Multi-Hole Diesel Injector. Experimental Techniques, 2017, 41, 95-102.	1.5	6

#	Article	IF	CITATIONS
55	The effect of nozzle geometry over the evaporative spray formation for three different fuels. Fuel, 2017, 188, 645-660.	6.4	57
56	NEAR FIELD VISUALIZATION OF DIESEL SPRAY FOR DIFFERENT NOZZLE INCLINATION ANGLES IN NON-VAPORIZING CONDITIONS. Atomization and Sprays, 2017, 27, 251-267.	0.8	11
57	Nozzle Geometry Size Influence on Reactive Spray Development: From Spray B to Heavy Duty Applications. , 2017, , .		1
58	INTERNAL FLOW CHARACTERIZATION ON AN ECN GDi INJECTOR. Atomization and Sprays, 2016, 26, 889-919.	0.8	29
59	Soot Model Calibration Based on Laser Extinction Measurements. , 2016, , .		2
60	Study of liquid and vapor phase behavior on Diesel sprays for heavy duty engine nozzles. Applied Thermal Engineering, 2016, 107, 365-378.	6.0	67
61	Hydraulic characterization of diesel engine single-hole injectors. Fuel, 2016, 180, 357-366.	6.4	52
62	Effect of turbulent model closure and type of inlet boundary condition on a Large Eddy Simulation of a non-reacting jet with co-flow stream. International Journal of Heat and Fluid Flow, 2016, 61, 545-552.	2.4	2
63	Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part I: Inert atmosphere. Energy Conversion and Management, 2016, 126, 1146-1156.	9.2	52
64	Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part II: Reactive atmosphere. Energy Conversion and Management, 2016, 126, 1157-1167.	9.2	51
65	The effect of nozzle geometry over internal flow and spray formation for three different fuels. Fuel, 2016, 183, 20-33.	6.4	64
66	Study of new prototype pintle injectors for diesel engine application. Energy Conversion and Management, 2016, 122, 419-427.	9.2	10
67	A Technique to Match the Refractive Index of Different Diesel Fuels with the Refractive Index of Transparent Materials to Improve the Experimental Visualization. Experimental Techniques, 2016, 40, 261-269.	1.5	7
68	Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector. Applied Energy, 2016, 162, 541-550.	10.1	79
69	Linking instantaneous rate of injection to X-ray needle lift measurements for a direct-acting piezoelectric injector. Energy Conversion and Management, 2016, 112, 350-358.	9.2	33
70	Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Conversion and Management, 2016, 114, 376-391.	9.2	52
71	On the rate of injection modeling applied to direct injection compression ignition engines. International Journal of Engine Research, 2016, 17, 1015-1030.	2.3	32
72	Boundary condition and fuel composition effects on injection processes of high-pressure sprays at the microscopic level. International Journal of Multiphase Flow, 2016, 83, 267-278.	3.4	31

#	Article	IF	Citations
73	Velocity field analysis of the high density, high pressure diesel spray. International Journal of Multiphase Flow, 2016, 80, 69-78.	3.4	29
74	Experimental Analysis on the Influence of Nozzle Geometry Over the Dispersion of Liquid N-Dodecane Sprays. Frontiers in Mechanical Engineering, 2015, 1 , .	1.8	13
75	Editorial: Thermo- and fluid-dynamic processes in direct injection engines – THIESEL 2014 Special Issue. International Journal of Engine Research, 2015, 16, 3-4.	2.3	1
76	A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 2015, 90, 619-629.	6.0	66
77	Experimental and numerical study of lift-off length and ignition delay of a two-component diesel surrogate. Fuel, 2015, 158, 957-967.	6.4	49
78	Verification of a new CFD compressible segregated and multi-phase solver with different flux updates-equations sequences. Applied Mathematical Modelling, 2015, 39, 851-861.	4.2	13
79	A New Methodology to Evaluate Engine Ignition Systems in High Density Conditions. Experimental Techniques, 2014, 38, 17-28.	1.5	2
80	Engine combustion network: Influence of the gas properties on the spray penetration and spreading angle. Experimental Thermal and Fluid Science, 2014, 53, 236-243.	2.7	53
81	Experimental study of the relationship between injection rate shape and Diesel ignition using a novel piezo-actuated direct-acting injector. Applied Energy, 2014, 118, 100-113.	10.1	55
82	Study of the influence of the inlet boundary conditions in a LES simulation of internal flow in a diesel injector. Mathematical and Computer Modelling, 2013, 57, 1709-1715.	2.0	7
83	Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector. Applied Thermal Engineering, 2013, 58, 554-563.	6.0	135
84	Study of cavitation phenomenon using different fuels in a transparent nozzle by hydraulic characterization and visualization. Experimental Thermal and Fluid Science, 2013, 44, 235-244.	2.7	73
85	Needle lift profile influence on the vapor phase penetration for a prototype diesel direct acting piezoelectric injector. Fuel, 2013, 113, 257-265.	6.4	67
86	Study liquid length penetration results obtained with a direct acting piezo electric injector. Applied Energy, 2013, 106, 152-162.	10.1	65
87	Evaluation of Emissions and Performances from Partially Premixed Compression Ignition Combustion using Gasoline and Spark Assistance. , 2013, , .		12
88	A Technique to Match the Refractive Index of Different Diesel Fuels with the Refractive Index of Transparent Materials to Improve the Experimental Visualization. Experimental Techniques, 2013, , $n/a-n/a$.	1.5	0
89	Understanding the Acoustic Oscillations Observed in the Injection Rate of a Common-Rail Direct Injection Diesel Injector. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	1.1	34
90	Flow regime effects over non-cavitating diesel injection nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2012, 226, 133-144.	1.9	27

#	Article	IF	Citations
91	Understanding the Acoustic Oscillations Observed in the Injection Rate of a Common-Rail DI Diesel Injector., 2012,,.		2
92	Effect of Injection Rate Shaping Over Diesel Spray Development in Non Reacting Evaporative Conditions. , 2012 , , .		6
93	A contribution to the understanding of cavitation effects in Diesel injector nozzles through a combined experimental and computational investigation. Computers and Fluids, 2012, 58, 88-101.	2.5	88
94	Combination of Visualization Techniques for the Analysis of Evaporating Diesel Sprays. Energy & Energy & Fuels, 2012, 26, 5481-5490.	5.1	16
95	Evaluation of natural and tracer fluorescent emission methods for droplet size measurements in a diesel spray. International Journal of Automotive Technology, 2012, 13, 713-724.	1.4	8
96	EXPERIMENTAL AND COMPUTATIONAL STUDY OF THE INFLUENCE OF PARTIAL NEEDLE LIFT ON NOZZLE FLOWIN DIESEL FUEL INJECTORS. Atomization and Sprays, 2012, 22, 687-714.	0.8	10
97	ENGINE COMBUSTION NETWORK (ECN): CHARACTERIZATION AND COMPARISON OF BOUNDARY CONDITIONS FOR DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 2012, 22, 777-806.	0.8	111
98	ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 2012, 22, 807-842.	0.8	147
99	An experimental study of gasoline effects on injection rate, momentum flux and spray characteristics using a common rail diesel injection system. Fuel, 2012, 97, 390-399.	6.4	75
100	Fuel concentration in isothermal Diesel sprays through structured planar laser imaging measurements. International Journal of Heat and Fluid Flow, 2012, 34, 98-106.	2.4	5
101	Fuel temperature influence on diesel sprays in inert and reacting conditions. Applied Thermal Engineering, 2012, 35, 185-195.	6.0	117
102	Using one-dimensional modeling to analyse the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Detailed injection system model. Energy Conversion and Management, 2012, 54, 90-99.	9.2	72
103	Experimental Evaluation of the Best Approach for Diesel Spray Images Segmentation. Experimental Techniques, 2012, 36, 26-34.	1.5	35
104	ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 2012, 22, 1011-1052.	0.8	116
105	ANALYSIS OF DIESEL SPRAY ATOMIZATION BY MEANS OF A NEAR-NOZZLE FIELD VISUALIZATION TECHNIQUE. Atomization and Sprays, 2011, 21, 753-774.	0.8	15
106	ANALYSIS OF TRANSIENT LIQUID AND VAPOR PHASE PENETRATION FOR DIESEL SPRAYS UNDER VARIABLE INJECTION CONDITIONS. Atomization and Sprays, 2011, 21, 503-520.	0.8	15
107	Large Eddy Simulation for high pressure flows: Model extension for compressible liquids. Mathematical and Computer Modelling, 2011, 54, 1725-1731.	2.0	7
108	Influence of injector technology on injection and combustion development – Part 1: Hydraulic characterization. Applied Energy, 2011, 88, 1068-1074.	10.1	63

#	Article	IF	Citations
109	Determination of the optical depth of a DI diesel spray. Journal of Mechanical Science and Technology, 2011, 25, 209-219.	1.5	9
110	Influence of injector technology on injection and combustion development – Part 2: Combustion analysis. Applied Energy, 2011, 88, 1130-1139.	10.1	40
111	The effect of temperature and pressure on thermodynamic properties of diesel and biodiesel fuels. Fuel, 2011, 90, 1172-1180.	6.4	102
112	Flow regime effects on non-cavitating injection nozzles over spray behavior. International Journal of Heat and Fluid Flow, 2011, 32, 273-284.	2.4	53
113	The potential of Large Eddy Simulation (LES) code for the modeling of flow in diesel injectors. Mathematical and Computer Modelling, 2010, 52, 1151-1160.	2.0	37
114	Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions. Fuel, 2010, 89, 3033-3041.	6.4	116
115	Cavitation effects on spray characteristics in the near-nozzle field., 2009,,.		4
116	Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation. Optical Engineering, 2009, 48, 013601.	1.0	9
117	Effects of nozzle geometry on direct injection diesel engine combustion process. Applied Thermal Engineering, 2009, 29, 2051-2060.	6.0	120
118	Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. International Journal of Heat and Fluid Flow, 2009, 30, 768-777.	2.4	117
119	Experimental Study of Biodiesel Blends' Effects on Diesel Injection Processes. Energy & Samp; Fuels, 2009, 23, 3227-3235.	5.1	69
120	Experimental Study on RME Blends: Liquid-Phase Fuel Penetration, Chemiluminescence, and Soot Luminosity in Diesel-Like Conditions. Energy & Energy & 2009, 23, 5899-5915.	5.1	22
121	Phase doppler measurements: system set-up optimization for characterization of a diesel nozzle. Journal of Mechanical Science and Technology, 2008, 22, 1620-1632.	1.5	23
122	Diesel nozzle geometry influence on spray liquid-phase fuel penetration in evaporative conditions. Fuel, 2008, 87, 1165-1176.	6.4	156
123	A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 2008, 32, 46-49.	1.5	134
124	Spray droplet velocity characterization for convergent nozzles with three different diameters. Fuel, 2008, 87, 3176-3182.	6.4	58
125	Effect of fuel properties on diesel spray development in extreme cold conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222, 1743-1753.	1.9	23
126	Influence of Nozzle Geometry on Spray Characteristics in Non-evaporative and Evaporative Conditions., 2007,,.		7

#	Article	IF	Citations
127	A contribution to the understanding of isothermal diesel spray dynamics. Fuel, 2007, 86, 1093-1101.	6.4	72
128	On the dependence of spray momentum flux in spray penetration: Momentum flux packets penetration model. Journal of Mechanical Science and Technology, 2007, 21, 1100-1111.	1.5	34
129	Setting up a PDPA system for measurements in a Diesel spray. Journal of Physics: Conference Series, 2006, 45, 85-93.	0.4	20
130	Prediction of Spray Penetration by Means of Spray Momentum Flux., 2006,,.		29
131	Development and validation of a theoretical model for diesel spray penetration. Fuel, 2006, 85, 910-917.	6.4	160
132	Applying analytical ferrography as a technique to detect failures in Diesel engine fuel injection systems. Wear, 2006, 260, 562-566.	3.1	37
133	Using one-dimensional modelling codes to analyse the influence of diesel nozzle geometry on injection rate characteristics. International Journal of Vehicle Design, 2005, 38, 58.	0.3	16
134	Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 2005, 84, 551-561.	6.4	323
135	Determination of diesel sprays characteristics in real engine in-cylinder air density and pressure conditions. Journal of Mechanical Science and Technology, 2005, 19, 2040-2052.	1.5	45
136	Investigation of the Influence of Injection Rate Shaping on the Spray Characteristics in a Diesel Common Rail System Equipped with a Piston Amplifier. Journal of Fluids Engineering, Transactions of the ASME, 2005, 127, 1102-1110.	1.5	29
137	Study of the influence of nozzle seat type on injection rate and spray behaviour. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219, 677-689.	1.9	42
138	EXPERIMENTAL CHARACTERIZATION OF INTERNAL NOZZLE FLOW AND DIESEL SPRAY BEHAVIOR. PART I: NONEVAPORATIVE CONDITIONS. , 2005, 15, 489-516.		45
139	EXPERIMENTAL CHARACTERIZATION OF INTERNAL NOZZLE FLOW AND DIESEL SPRAY BEHAVIOR. PART II: EVAPORATIVE CONDITIONS. , 2005, 15, 517-544.		34
140	Analysis of the Influence of Diesel Nozzle Geometry in the Injection Rate Characteristic. Journal of Fluids Engineering, Transactions of the ASME, 2004, 126, 63-71.	1.5	94
141	Diesel Injection System Modelling. Methodology and Application for a First-generation Common Rail System. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218, 81-91.	1.9	51
142	CRITICAL CAVITATION NUMBER DETERMINATION IN DIESEL INJECTION NOZZLES. Experimental Techniques, 2004, 28, 49-52.	1.5	33
143	A study of the relation between nozzle geometry, internal flow and sprays characteristics in diesel fuel injection systems. Journal of Mechanical Science and Technology, 2004, 18, 1222-1235.	0.4	52
144	The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel, 2004, 83, 419-431.	6.4	338

#	Article	IF	Citations
145	NEW TECHNIQUE FOR DETERMINATION OF INTERNAL GEOMETRY OF A DIESEL NOZZLE WITH THE USE OF SILICONE METHODOLOGY. Experimental Techniques, 2003, 27, 39-43.	1.5	125
146	A CFD ANALYSIS OF THE INFLUENCE OF DIESEL NOZZLE GEOMETRY ON THE INCEPTION OF CAVITATION. , 2003, 13, 579-604.		50
147	Evaluation through pressure and mass velocity distributions of the linear acoustical description of I. C. engine exhaust systems. Applied Acoustics, 2000, 60, 489-504.	3.3	18
148	The Use of Transfer Matrix for the Design of Interferencial Systems in Exhaust Mufflers. , 2000, , .		25
149	A study of the influence of mean flow on the acoustic performance of Herschel–Quincke tubes. Journal of the Acoustical Society of America, 2000, 107, 1874-1879.	1.1	33
150	Numerical Estimation of End Corrections in Extended-Duct and Perforated-Duct Mufflers. Journal of Vibration and Acoustics, Transactions of the ASME, 1999, 121, 302-308.	1.6	26
151	On the Influence of Manifold Geometry on Exhaust Noise. , 0, , .		5
152	Modeling the Exhaust System in Two-Stroke Small Engines. , 0, , .		4
153	A Numerical Study of the Influence of Diesel Nozzle Geometry on the Inner Cavitating Flow. , 0, , .		42
154	Measurements of Spray Momentum for the Study of Cavitation in Diesel Injection Nozzles., 0, , .		62
155	Effects of the Operating Variables and Atomization Parameters on Diesel Spray Characteristics by Means of a Transient Evaporative Spray Atomization Model. , 0, , .		5
156	Influence of Nozzle Seat Type on Internal Flow of Convergent Nozzles. , 0, , .		9
157	Study of the Influence of Geometrical and Injection Parameters on Diesel Sprays Characteristics in Isothermal Conditions. , 0, , .		44
158	Comparison between Different Hole to Hole Measurement Techniques in a Diesel Injection Nozzle. , 0, ,		8
159	Macroscopic Behavior of Diesel Sprays in the Near-Nozzle Field. SAE International Journal of Engines, 0, 1, 528-536.	0.4	36
160	Combined CFD-Phenomenological Approach to the Analysis of Diesel Sprays under Non-Evaporative Conditions., 0,,.		8
161	Understanding Diesel Injection Characteristics in Winter Conditions. , 0, , .		10
162	Influence on Diesel Injection Characteristics and Behavior Using Biodiesel Fuels., 0,,.		24

#	Article	IF	Citations
163	Effect of Partial Needle Lift on the Nozzle Flow in Diesel Fuel Injectors., 0,,.		12
164	Schlieren Measurements of the ECN-Spray A Penetration under Inert and Reacting Conditions. , 0, , .		52
165	Hydraulic Behavior and Spray Characteristics of a Common Rail Diesel Injection System Using Gasoline Fuel. , 0, , .		11
166	An Experimental Approach in the Impact of Electric Fields on Liquid Fuel Spray Injection., 0,,.		0
167	Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution. SAE International Journal of Engines, 0, 6, 1661-1676.	0.4	22
168	Transient Rate of Injection Effects on Spray Development., 0,,.		78
169	Simulation of the First Millimeters of the Diesel Spray by an Eulerian Spray Atomization Model Applied on ECN Spray A Injector. , 0, , .		14
170	Momentum Flux Measurements on an ECN GDi Injector., 0, , .		17
171	Assessment on Internal Nozzle Flow Initialization in Diesel Spray Simulations. , 0, , .		7
172	Comparative Analysis of Particle Emission with Two Different Injectors in a CAI 2-Stroke Gasoline Engine. , 0 , , .		0
173	Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique. , 0, , .		6
174	Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation. SAE International Journal of Fuels and Lubricants, 0, 10, 423-431.	0.2	14
175	An Investigation on the Fuel Temperature Variations Along a Solenoid Operated Common-Rail Ballistic Injector by Means of an Adiabatic 1D Model. , 0, , .		9
176	Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray. , 0 , , .		0
177	Nozzle Flow Simulation of GDi for Measuring Near-Field Spray Angle and Plume Direction. , 0, , .		11
178	Spray Characterization of the Urea-Water Solution (UWS) Injected in a Hot Air Stream Analogous to SCR System Operating Conditions. , 0, , .		10
179	Nozzle Flow and Spray Development One-Way Coupling Methodology for a Multi-Hole GDi Injector. , 0,		5
180	Aging of a Multi-Hole Diesel Injector and Its Effect on the Rate of Injection. , 0, , .		3

#	Article	IF	CITATIONS
181	Spray/wall interaction analysis on an ECN single-hole injector at diesel-like conditions through Schlieren visualization , 0, , .		1
182	A study on the relationship between internal nozzle geometry and injected mass distribution of eight ECN Spray G nozzles , 0, , .		4
183	Quantification of diesel injector dribble using 3D reconstruction from x-ray and DBI imaging., 0,,.		O
184	Vapor phase penetration measurements with both single and double-pass Schlieren for the same injection event. , 0, , .		1
185	High-Speed Thermographic Analysis of Diesel Injector Nozzle Tip Temperature. , 0, , .		O
186	Numerical Analysis of the Injection Angle of Urea-Water Sprays for the Ammonia Generation in Realistic Test Conditions. , 0 , , .		1