
José I Rodriguez-Barbosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1162062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of the Inhibitory Ligand HVEM and Its Receptors CD160 and BTLA in the Regulation of Anti-retroviral T Cell Responses. Frontiers in Virology, 2022, 2, .	1.4	0
2	The impact of CD160 deficiency on alloreactive CD8 T cell responses and allograft rejection. Translational Research, 2021, , .	5.0	5
3	Editorial: The Roles of Checkpoint Inhibitors in Inflammatory Diseases. Frontiers in Immunology, 2021, 12, 795495.	4.8	Ο
4	The Role of TNFR2 and DR3 in the In Vivo Expansion of Tregs in T Cell Depleting Transplantation Regimens. International Journal of Molecular Sciences, 2020, 21, 3347.	4.1	8
5	Critical role of PD-L1 expression on non-tumor cells rather than on tumor cells for effective anti-PD-L1 immunotherapy in a transplantable mouse hematopoietic tumor model. Cancer Immunology, Immunotherapy, 2020, 69, 1001-1014.	4.2	7
6	CD160 serves as a negative regulator of NKT cells in acute hepatic injury. Nature Communications, 2019, 10, 3258.	12.8	29
7	HVEM, a cosignaling molecular switch, and its interactions with BTLA, CD160 and LICHT. Cellular and Molecular Immunology, 2019, 16, 679-682.	10.5	37
8	Therapeutic implications of NK cell regulation of allogeneic CD8 T cell-mediated immune responses stimulated through the direct pathway of antigen presentation in transplantation. MAbs, 2018, 10, 1-15.	5.2	2
9	Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma. International Journal of Molecular Sciences, 2018, 19, 752.	4.1	34
10	T follicular helper expansion and humoral-mediated rejection are independent of the HVEM/BTLA pathway. Cellular and Molecular Immunology, 2017, 14, 497-510.	10.5	15
11	Modulation of cytotoxic responses by targeting CD160 prolongs skin graft survival across major histocompatibility class I barrier. Translational Research, 2017, 181, 83-95.e3.	5.0	11
12	Porcine Islet-Specific Tolerance Induced by the Combination of Anti-LFA-1 and Anti-CD154 mAbs is Dependent on PD-1. Cell Transplantation, 2016, 25, 327-342.	2.5	8
13	Immunotherapeutic targeting of LIGHT/LTβR/HVEM pathway fully recapitulates the reduced cytotoxic phenotype of LIGHT-deficient T cells. MAbs, 2016, 8, 478-490.	5.2	11
14	The European antibody network's practical guide to finding and validating suitable antibodies for research. MAbs, 2016, 8, 27-36.	5.2	46
15	Human Bone Marrow Stromal Cells Differentiate into Corneal Tissue and Prevent Ocular Graft-Versus-Host Disease in Mice. Cell Transplantation, 2015, 24, 2423-2433.	2.5	14
16	Therapeutic Blockade of LIGHT Interaction With Herpesvirus Entry Mediator and Lymphotoxin β Receptor Attenuates In Vivo Cytotoxic Allogeneic Responses. Transplantation, 2014, 98, 1165-1174.	1.0	6
17	Interactions between Herpesvirus Entry Mediator (TNFRSF14) and Latency-Associated Transcript during Herpes Simplex Virus 1 Latency. Journal of Virology, 2014, 88, 1961-1971.	3.4	36
18	LIGHT/HVEM/LTβR Interaction as a Target for the Modulation of the Allogeneic Immune Response in Transplantation. American Journal of Transplantation, 2013, 13, 541-551.	4.7	16

#	Article	IF	CITATIONS
19	<scp>ITIM</scp> â€dependent negative signaling pathways for the control of cellâ€mediated xenogeneic immune responses. Xenotransplantation, 2013, 20, 397-406.	2.8	14
20	Selective Blockade of Herpesvirus Entry Mediator–B and T Lymphocyte Attenuator Pathway Ameliorates Acute Graft-versus-Host Reaction. Journal of Immunology, 2012, 188, 4885-4896.	0.8	25
21	Immortalization of bone marrow-derived porcine mesenchymal stem cells and their differentiation into cells expressing cardiac phenotypic markers. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 655-665.	2.7	6
22	B- and T-Lymphocyte Attenuator Targeting Protects Against the Acute Phase of Graft Versus Host Reaction by Inhibiting Donor Anti-Host Cytotoxicity. Transplantation, 2011, 92, 1085-1093.	1.0	15
23	Flt3L-mobilized dendritic cells bearing H2-Kbm1 apoptotic cells do not induce cross-tolerance to CD8+ T cells across a class I MHC mismatched barrier. Transplant International, 2011, 24, 501-513.	1.6	6
24	Development and functional specialization of CD103 ⁺ dendritic cells. Immunological Reviews, 2010, 234, 268-281.	6.0	241
25	ADAP deficiency combined with costimulation blockade synergistically protects intestinal allografts. Transplant International, 2010, 23, 71-79.	1.6	9
26	Detection of protein on BTLAlow cells and in vivo antibody-mediated down-modulation of BTLA on lymphoid and myeloid cells of C57BL/6 and BALB/c BTLA allelic variants. Immunobiology, 2010, 215, 570-578.	1.9	26
27	Inmunorregulación: un nuevo paradigma terapéutico. Inmunologia (Barcelona, Spain: 1987), 2010, 29, 135-140.	0.1	Ο
28	Blood cellular immune response in pigs immunized and challenged with Haemophilus parasuis. Research in Veterinary Science, 2009, 86, 230-234.	1.9	20
29	HVEM/LIGHT/BTLA/CD160 cosignaling pathways as targets for immune regulation. Journal of Leukocyte Biology, 2009, 87, 223-235.	3.3	131
30	PD-1/PD-L1, PD-1/PD-L2, and other co-inhibitory signaling pathways in transplantation. Transplant International, 2008, 21, ???-???.	1.6	40
31	CX3CR1+c-kit+ Bone Marrow Cells Give Rise to CD103+ and CD103â^' Dendritic Cells with Distinct Functional Properties. Journal of Immunology, 2008, 181, 6178-6188.	0.8	41
32	CD103â^' and CD103+ Bronchial Lymph Node Dendritic Cells Are Specialized in Presenting and Cross-Presenting Innocuous Antigen to CD4+ and CD8+ T Cells. Journal of Immunology, 2007, 178, 6861-6866.	0.8	266
33	The thymus is required for the ability of FTY720 to prolong skin allograft survival across different histocompatibility MHC barriers. Transplant International, 2007, 20, 895-903.	1.6	9
34	Blockade of the PD-1/PD-1L pathway reverses the protective effect of anti-CD40L therapy in a rat to mouse concordant islet xenotransplantation model. Xenotransplantation, 2007, 14, 243-248.	2.8	14
35	Global Unresponsiveness as a Mechanism of Natural Killer Cell Tolerance in Mixed Xenogeneic Chimeras. American Journal of Transplantation, 2007, 7, 2090-2097.	4.7	25
36	aroA gene PCR-RFLP diversity patterns in Haemophilus parasuis and Actinobacillus species. Research in Veterinary Science, 2006, 80, 55-61.	1.9	24

#	Article	IF	CITATIONS
37	Induction of Tolerance to Innocuous Inhaled Antigen Relies on a CCR7-Dependent Dendritic Cell-Mediated Antigen Transport to the Bronchial Lymph Node. Journal of Immunology, 2006, 177, 7346-7354.	0.8	194
38	Molecular characterization of Haemophilus parasuis ferric hydroxamate uptake (fhu) genes and constitutive expression of the FhuA receptor. Veterinary Research, 2006, 37, 49-59.	3.0	27
39	Protection of Mouse Small Bowel Allografts by FTY720 and Costimulation Blockade. Transplantation, 2005, 79, 1703-1710.	1.0	13
40	Identification of sull allele of dihydropteroate synthase by representational difference analysis in Haemophilus parasuis serovar 2. Letters in Applied Microbiology, 2005, 40, 436-442.	2.2	4
41	Antibody-mediated signaling through PD-1 costimulates T cells and enhances CD28-dependent proliferation. European Journal of Immunology, 2005, 35, 3545-3560.	2.9	28
42	Identification and characterization of the TonB region and its role in transferrin-mediated iron acquisition inHaemophilus parasuis. FEMS Immunology and Medical Microbiology, 2005, 45, 75-86.	2.7	21
43	Control of intestinal allograft rejection by FTY720 and costimulation blockade. Transplantation Proceedings, 2005, 37, 114-115.	0.6	4
44	Differentiation "in vitro―of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation. Transplantation Proceedings, 2005, 37, 481-482.	0.6	72
45	FTY720 Inhibits TH1-Mediated Allogeneic Humoral Immune Response. Transplantation Proceedings, 2005, 37, 4124-4126.	0.6	8
46	Host thymectomy and cyclosporine lead to unstable skin graft tolerance after class I mismatched allogeneic neonatal thymic transplantation in mice. Transplant Immunology, 2005, 15, 25-33.	1.2	3
47	Inducción de tolerancia en el trasplante de órganos sólidos. GastroenterologÃa Y HepatologÃa, 2004, 27, 66-72.	0.5	0
48	Xenogeneic thymic replacement to achieve immune restoration in HIV infection. Clinical and Applied Immunology Reviews, 2003, 3, 167-171.	0.4	0
49	Fetal porcine thymus engraftment, survival and CD4 reconstitution in αGal-KO mice is impaired in the presence of high levels of antibodies against αGal. Xenotransplantation, 2003, 10, 24-40.	2.8	11
50	Despite efficient intrathymic negative selection of host-reactive T cells, autoimmune disease may develop in porcine thymus-grafted athymic mice: evidence for failure of regulatory mechanisms suppressing autoimmunity1. Transplantation, 2003, 75, 1832-1840.	1.0	24
51	Murine CD4 T Cells Selected in a Highly Disparate Xenogeneic Porcine Thymus Graft Do Not Show Rapid Decay in the Absence of Selecting MHC in the Periphery. Journal of Immunology, 2002, 169, 6697-6710.	0.8	7
52	Isolation and characterization of immortalized porcine aortic endothelial cell lines. Veterinary Immunology and Immunopathology, 2002, 89, 91-98.	1.2	54
53	Estudio clÃnico e inmunólogico del xenorrechazo en el xenotrasplante ortotópico de hÃgado de cerdo a babuino. CirugÃa Española, 2002, 72, 4-9.	0.2	0
54	HIGHLY DISPARATE XENOGENEIC SKIN GRAFT TOLERANCE INDUCTION BY FETAL PIG THYMUS IN THYMECTOMIZED MICE. Transplantation, 2001, 72, 1608-1615.	1.0	21

#	Article	IF	CITATIONS
55	ENHANCED CD4 RECONSTITUTION BY GRAFTING NEONATAL PORCINE TISSUE IN ALTERNATIVE LOCATIONS IS ASSOCIATED WITH DONOR-SPECIFIC TOLERANCE AND SUPPRESSION OF PREEXISTING XENOREACTIVE T CELLS1. Transplantation, 2001, 72, 1223-1231.	1.0	32
56	The critical role of mouse CD4+ cells in the rejection of highly disparate xenogeneic pig thymus grafts. Xenotransplantation, 2000, 7, 129-137.	2.8	17
57	THE INDUCTION OF SPECIFIC PIG SKIN GRAFT TOLERANCE BY GRAFTING WITH NEONATAL PIG THYMUS IN THYMECTOMIZED MICE1. Transplantation, 2000, 69, 1447-1451.	1.0	19
58	Actinobacillus pleuropneumoniae does not require urease activity to produce acute swine pleuropneumonia. FEMS Microbiology Letters, 1997, 148, 53-57.	1.8	6
59	Characterization of monoclonal antibodies that recognize common epitopes located on O antigen of lipopolysaccharide of serotypes 1, 9 and 11 of Actinobacillus pleuropneumoniae. FEMS Immunology and Medical Microbiology, 1996, 16, 173-181.	2.7	7
60	Seroepidemiological survey of Q fever in Leï;½n Province, Spain. European Journal of Epidemiology, 1996, 12, 245-250.	5.7	11
61	Characterization of monoclonal antibodies to O-antigen of lipopolysaccharide of Actinobacillus pleuropneumoniae serotype 2 and their use in the classification of field isolates. FEMS Immunology and Medical Microbiology, 1995, 11, 35-44.	2.7	1
62	Evaluation of an Immunoperoxidase Technique Using an Only Biotin‣abeled Antibody for the Demonstration of <i>Actinobacillus pleuropneumoniae</i> in Tissue Sections. Zoonoses and Public Health, 1993, 40, 81-88.	1.4	0
63	Characterization of V factor-dependent organisms of the family Pasteurellaceae isolated from porcine pneumonic lungs in Spain. Comparative Immunology, Microbiology and Infectious Diseases, 1993, 16, 123-130.	1.6	13
64	Quantifying by monoclonal antibodies of specific IgG, IgM and IgA in the serum of minipigs experimentally infected with Actinobacillus pleuropneumoniae. Research in Veterinary Science, 1992, 53, 254-256.	1.9	1
65	Viability of Actinobacillus pleuropneumoniae in frozen pig lung samples and comparison of different methods of direct diagnosis in fresh samples. Comparative Immunology, Microbiology and Infectious Diseases, 1992, 15, 89-95.	1.6	8
66	Differential Engraftment of Parental A20 PD-L1 WT and PD-L1 KO Leukemia Cells in Semiallogeneic Recipients in the Context of PD-L1/PD-1 Interaction and NK Cell-Mediated Hybrid Resistance. Frontiers in Immunology, 0, 13, .	4.8	1