Antonio Proto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11618894/publications.pdf Version: 2024-02-01

Δητονίο Ρροτο

#	Article	IF	CITATIONS
1	New analytical approach to monitoring air quality in historical monuments through the isotopic ratio of CO2. Environmental Science and Pollution Research, 2022, 29, 29385-29390.	5.3	14
2	Investigations on historical monuments' deterioration through chemical and isotopic analyses: an Italian case study. Environmental Science and Pollution Research, 2022, 29, 29409-29418.	5.3	10
3	Glycidol syntheses and valorizations: Boosting the glycerol biorefinery. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100624.	5.9	5
4	Glycerol carbonate structuring in aqueous solutions as inferred from mutual diffusion coefficient, density and viscosity measurements in the temperature range 283.15–313.15ÂK. Journal of Molecular Liquids, 2022, 357, 119114.	4.9	7
5	Combination of foam fractionation and photo-Fenton like processes for greywater treatment. Separation and Purification Technology, 2022, 293, 121114.	7.9	15
6	Catalytic Routes to Produce Polyphenolic Esters (PEs) from Biomass Feedstocks. Catalysts, 2022, 12, 447.	3.5	4
7	Review of aminopolycarboxylic acids–based metal complexesÂapplication to water and wastewater treatment by (photo-)Fenton process at neutral pH. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100451.	5.9	22
8	Microplastics in the Aquatic Environment: Occurrence, Persistence, Analysis, and Human Exposure. Water (Switzerland), 2021, 13, 973.	2.7	56
9	Leonardo da Vinci's "Last Supper†a case study to evaluate the influence of visitors on the Museum preservation systems. Environmental Science and Pollution Research, 2021, , 1.	5.3	9
10	Effect of the aqueous matrix on the inactivation of E. coli by permaleic acid. Science of the Total Environment, 2021, 767, 144395.	8.0	3
11	Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure. Water (Switzerland), 2021, 13, 1347.	2.7	103
12	Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics, 2021, 9, 224.	3.7	105
13	The fascinating world of mayenite (Ca12Al14O33) and its derivatives. Rendiconti Lincei, 2021, 32, 699-708.	2.2	15
14	Development of a new vapour phase methodology for textiles disinfection. Cleaner Engineering and Technology, 2021, 4, 100170.	4.0	8
15	Comparative analysis of peracetic acid (PAA) and permaleic acid (PMA) in disinfection processes. Science of the Total Environment, 2021, 797, 149206.	8.0	23
16	Application of 13C Quantitative NMR Spectroscopy to Isotopic Analyses for Vanillin Authentication Source. Foods, 2021, 10, 2635.	4.3	7
17	Fe3+- IDS as a new green catalyst for water treatment by photo-Fenton process at neutral pH. Journal of Environmental Chemical Engineering, 2021, 9, 106802.	6.7	14
18	Physical Constraints on Global Social-Ecological Energy System. Energies, 2021, 14, 8177.	3.1	1

#	Article	IF	CITATIONS
19	Poly(glycidyl ether)s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chemical Engineering Journal, 2020, 382, 122934.	12.7	73
20	Combination of flow cytometry and molecular analysis to monitor the effect of UVC/H2O2 vs UVC/H2O2/Cu-IDS processes on pathogens and antibiotic resistant genes in secondary wastewater effluents. Water Research, 2020, 184, 116194.	11.3	34
21	Characterization and authentication of commercial cleaning products formulated with biobased surfactants by stable carbon isotope ratio. Talanta, 2020, 219, 121256.	5.5	23
22	Preferential Use of the Perchlorate over the Nitrate in the Respiratory Processes Mediated by the Bacterium Azospira sp. OGA 24. Water (Switzerland), 2020, 12, 2220.	2.7	7
23	An alternative approach for the decontamination of hospital settings. Journal of Infection and Public Health, 2020, 13, 2038-2044.	4.1	11
24	New green route to obtain (bio)-propene through 1,2-propanediol deoxydehydration. Sustainable Chemistry and Pharmacy, 2020, 17, 100273.	3.3	7
25	A step towards bio-surfactants: Monoalkylglyceryl ethers synthesis through glycidol alcoholysis with long-chain alcohols catalyzed by Al(OTf)3. Sustainable Chemistry and Pharmacy, 2020, 17, 100281.	3.3	6
26	Toward More Sustainable Elastomers: Stereoselective Copolymerization of Linear Terpenes with Butadiene. Macromolecules, 2020, 53, 1665-1673.	4.8	45
27	Regioselective Ringâ€Opening of Glycidol to Monoalkyl Glyceryl Ethers Promoted by an [OSSO]â€Fe ^{III} Triflate Complex. ChemSusChem, 2019, 12, 3448-3452.	6.8	14
28	Optimization of the anaerobic denitrification process mediated by Bacillus cereus in a batch reactor. Environmental Technology and Innovation, 2019, 16, 100456.	6.1	7
29	Oxidative Degradation of Trichloroethylene over Fe2O3-doped Mayenite: Chlorine Poisoning Mitigation and Improved Catalytic Performance. Catalysts, 2019, 9, 747.	3.5	13
30	A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation. Catalysts, 2019, 9, 27.	3.5	18
31	Trichloroethylene solubilization using a series of commercial biodegradable ethoxylated fatty alcohol surfactants. Journal of Chemical Technology and Biotechnology, 2019, 94, 3523-3529.	3.2	13
32	Cover Image, Volume 94, Issue 11. Journal of Chemical Technology and Biotechnology, 2019, 94, i.	3.2	0
33	First Attempt of Glycidolâ€ŧoâ€Monoalkyl Glyceryl Ethers Conversion by Acid Heterogeneous Catalysis: Synthesis and Simplified Sustainability Assessment. ChemSusChem, 2018, 11, 1829-1837.	6.8	20
34	Environmental Application of Extra-Framework Oxygen Anions in the Nano-Cages of Mayenite. Lecture Notes in Bioengineering, 2018, , 131-139.	0.4	5
35	Bio-Glycidol Conversion to Solketal over Acid Heterogeneous Catalysts: Synthesis and Theoretical Approach. Catalysts, 2018, 8, 391.	3.5	13
36	Development of a new radial passive sampling device for atmospheric NOx determination. Talanta, 2018, 190, 199-203.	5.5	14

#	Article	IF	CITATIONS
37	Disinfection of urban wastewater by a new photo-Fenton like process using Cu-iminodisuccinic acid complex as catalyst at neutral pH. Water Research, 2018, 146, 206-215.	11.3	46
38	Enhanced solubility of trichloroethylene (TCE) by a poly-oxyethylene alcohol as green surfactant. Environmental Technology and Innovation, 2018, 12, 72-79.	6.1	14
39	Carbonaceous PM10 and PM2.5 and secondary organic aerosol in a coastal rural site near Brindisi (Southern Italy). Environmental Science and Pollution Research, 2018, 25, 23929-23945.	5.3	36
40	Glycidol, a Valuable Substrate for the Synthesis of Monoalkyl Glyceryl Ethers: A Simplified Life Cycle Approach. ChemSusChem, 2017, 10, 2291-2300.	6.8	29
41	A new sorbent tube for atmospheric NOx determination by active sampling. Talanta, 2017, 164, 403-406.	5.5	13
42	Determination of the ¹³ C/ ¹² C Carbon Isotope Ratio in Carbonates and Bicarbonates by ¹³ C NMR Spectroscopy. Analytical Chemistry, 2017, 89, 11413-11418.	6.5	19
43	Stereoselective polymerization of biosourced terpenes β-myrcene and β-ocimene and their copolymerization with styrene promoted by titanium catalysts. Polymer, 2017, 131, 151-159.	3.8	46
44	Chemically stable Au nanorods as probes for sensitive surface enhanced scattering (SERS) analysis of blue BIC ballpoint pens. AIP Conference Proceedings, 2017, , .	0.4	3
45	Bio-propylene glycol as value-added product from Epicerol® process. Sustainable Chemistry and Pharmacy, 2017, 6, 10-13.	3.3	22
46	Use of Zea mays L. in phytoremediation of trichloroethylene. Environmental Science and Pollution Research, 2017, 24, 11053-11060.	5.3	39
47	Binary copolymerization of 4-methyl-1,3-pentadiene with styrene, butadiene and isoprene catalysed by a titanium [OSSO]-type catalyst. Polymer International, 2017, 66, 144-150.	3.1	7
48	Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Applied Catalysis B: Environmental, 2017, 204, 167-172.	20.2	33
49	Efficient and selective conversion of glycidol to 1,2-propanediol over Pd/C catalyst. Catalysis Communications, 2016, 77, 98-102.	3.3	20
50	Pollutants monitoring and air quality evaluation in a confined environment: The â€~Majesty' of Ambrogio Lorenzetti in the St. Augustine Church in Siena (Italy). Atmospheric Pollution Research, 2016, 7, 754-761.	3.8	15
51	FTIR and NDIR spectroscopies as valuable alternatives to IRMS spectrometry for the δ13 C analysis of food. Talanta, 2016, 160, 276-281.	5.5	11
52	A Multiâ€optical Collector of Sunlight Employing Luminescent Materials and Photonic Nanostructures. Advanced Optical Materials, 2016, 4, 147-155.	7.3	14
53	Synthesis of Monoalkyl Glyceryl Ethers by Ring Opening of Glycidol with Alcohols in the Presence of Lewis Acids. ChemSusChem, 2016, 9, 3272-3275.	6.8	28
54	Bactericidal and Fungicidal Activity in the Gas Phase of Sodium Dichloroisocyanurate (NaDCC). Current Microbiology, 2016, 73, 287-291.	2.2	23

#	Article	IF	CITATIONS
55	Determination of the trichloroethylene diffusion coefficient in water. AICHE Journal, 2015, 61, 3511-3515.	3.6	33
56	Nitrate Removal from Wastewater through Biological Denitrification with OGA 24 in a Batch Reactor. Water (Switzerland), 2015, 7, 51-62.	2.7	49
57	Styrene–isoprene and styrene–1,3-pentadiene copolymerisation catalyzed by titanium [OSSO]-type catalysts. RSC Advances, 2015, 5, 65998-66004.	3.6	7
58	A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium. Catalysis Communications, 2015, 68, 41-45.	3.3	29
59	An improved method for BTEX extraction from charcoal. Analytical Methods, 2015, 7, 4811-4815.	2.7	25
60	Structure of Isotactic Ethylene/4-Methyl-1,3-pentadiene Alternating Copolymers Obtained from Postmetallocene Catalysts. Macromolecules, 2015, 48, 6931-6940.	4.8	3
61	One-Year Surveillance of the Chemical and Microbial Quality of Drinking Water Shuttled to the Eolian Islands. Water (Switzerland), 2014, 6, 139-149.	2.7	8
62	Cascade luminescent solar concentrators. Applied Physics Letters, 2014, 104, 153901.	3.3	32
63	Stable carbon isotope ratio in atmospheric CO2 collected by new diffusive devices. Environmental Science and Pollution Research, 2014, 21, 3182-3186.	5.3	26
64	A study on the applicability of zinc acetate impregnated silica substrate in the collection of hydrogen sulfide by active sampling. Talanta, 2014, 128, 268-272.	5.5	11
65	Binary Copolymerization of <i>p</i> -Methylstyrene with Butadiene and Isoprene Catalyzed by Titanium Compounds Showing Different Stereoselectivity. Macromolecules, 2013, 46, 8449-8457.	4.8	38
66	Mayenite based supports for atmospheric NOx sampling. Atmospheric Environment, 2013, 79, 666-671.	4.1	22
67	Determination of Perchlorate in Bottled Water from Italy. Water (Switzerland), 2013, 5, 767-779.	2.7	24
68	Mechanistic Studies on Conjugated Diene Polymerizations Promoted by a Titanium Complex Containing a Tetradentate [OSSO]-Type Bis(phenolato) Ligand. Macromolecules, 2012, 45, 6363-6370.	4.8	23
69	Synthesis, characterization and field evaluation of a new calcium-based CO2 absorbent for radial diffusive sampler. Atmospheric Environment, 2012, 60, 82-87.	4.1	25
70	An acetic acid-based extraction method to obtain high quality collagen from archeological bone remains. Analytical Biochemistry, 2012, 421, 92-96.	2.4	19
71	Living, Isoselective Polymerization of 4-Methyl-1,3-pentadiene and Styrenic Monomers and Synthesis of Highly Stereoregular Block Copolymers via Sequential Monomer Addition. Macromolecules, 2011, 44, 7940-7947.	4.8	28
72	Asymmetric hydrodimerization of styrene by a chiral zirconium complex containing a tetradentate [OSSO]-type bis(phenolato) ligand. Catalysis Communications, 2011, 12, 1113-1117.	3.3	6

#	Article	IF	CITATIONS
73	Assessment of perchlorate-reducing bacteria in a highly polluted river. International Journal of Hygiene and Environmental Health, 2010, 213, 437-443.	4.3	24
74	Copolymerization of ethylene with isoprene promoted by titanium complexes containing a tetradentate [OSSO]â€ŧype bis(phenolato) ligand. Journal of Polymer Science Part A, 2010, 48, 4200-4206.	2.3	27
75	Living, Isoselective Polymerization of Styrene and Formation of Stereoregular Block Copolymers via Sequential Monomer Addition. Macromolecules, 2010, 43, 5919-5921.	4.8	35
76	Utilization of chemically oxidized polystyrene as co-substrate by filamentous fungi. International Journal of Hygiene and Environmental Health, 2009, 212, 61-66.	4.3	63
77	Detection of diagenetic alterations by Spectroscopic Analysis on Archaeological Bones from the Necropolis of Poseidonia (Paestum): A case study. Journal of Cultural Heritage, 2009, 10, 509-513.	3.3	22
78	New FTIR methodology for the evaluation of 13C/12C isotope ratio in Helicobacter pylori infection diagnosis. Journal of Infection, 2009, 59, 90-94.	3.3	17
79	Ethylene polymerization promoted by dinuclear titanium p-tert-butylthiacalix[4]arene complexes. European Polymer Journal, 2009, 45, 2138-2141.	5.4	9
80	Copolymerization of Ethylene with 4-Methyl-1,3-pentadiene Promoted by Titanium Complexes Containing a Tetradentate [OSSO]-Type Bis(phenolato) Ligand. Macromolecules, 2009, 42, 6981-6985.	4.8	19
81	Ethyleneâ^'Butadiene Copolymerization Promoted by Titanium Complex Containing a Tetradentate [OSSO]-Type Bis(phenolato) Ligand. Macromolecules, 2008, 41, 4573-4575.	4.8	44
82	Stereoselective Polymerization of Conjugated Dienes and Styreneâ^'Butadiene Copolymerization Promoted by Octahedral Titanium Catalyst. Macromolecules, 2007, 40, 5638-5643.	4.8	86
83	The Stereoselective Polymerization of Linear Conjugated Dienes. , 2007, , 447-473.		3
84	Determination of 13C/12C Carbon Isotope Ratio. Analytical Chemistry, 2006, 78, 3080-3083.	6.5	19
85	Paleodiet characterisation of an Etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS)#. Isotopes in Environmental and Health Studies, 2006, 42, 151-158.	1.0	10
86	Reactivity of styrene and substituted styrenes in the presence of a homogeneous isospecific titanium catalyst. Journal of Polymer Science Part A, 2006, 44, 1486-1491.	2.3	25
87	Copolymerization of ethylene with styrene catalyzed by a linked bis(phenolato) titanium catalyst. Journal of Polymer Science Part A, 2006, 44, 1908-1913.	2.3	46
88	Isospecific Styrene Polymerization by Chiral Titanium Complexes That Contain a Tetradentate [OSSO]-Type Bis(phenolato) Ligand. Organometallics, 2005, 24, 2971-2982.	2.3	121
89	Stereospecific post-metallocene polymerization catalysts: the example of isospecific styrene polymerization. Journal of Organometallic Chemistry, 2004, 689, 4636-4641.	1.8	59
90	Synthesis of branched polyethylene by ethylene homopolymerization using titanium catalysts that contain a bridged bis(phenolate) ligand. Journal of Polymer Science Part A, 2004, 42, 2815-2822.	2.3	43

#	Article	lF	CITATIONS
91	Isolated Ethylene Units in Isotactic Polystyrene Chain: Stereocontrol of an Isospecific Post-Metallocene Titanium Catalyst. Macromolecular Chemistry and Physics, 2004, 205, 370-373.	2.2	44
92	Propyleneâ~'Styrene Multiblock Copolymers:Â Evidence for Monomer Enchainment via Opposite Insertion Regiochemistry by a Single-Site Catalyst. Macromolecules, 2004, 37, 8918-8922.	4.8	49
93	Polymerization of ethylene in the presence of 1,3-dimethoxy-p-But-calix[4]arene titanium dichloride. NMR evidence of the cationic titanium compound generated by methylalumoxane. Inorganic Chemistry Communication, 2003, 6, 339-342.	3.9	29
94	Synthesis of Isotactic Poly-1,2-(4-methyl-1,3-pentadiene) by a Homogeneous Titanium Catalyst. Macromolecules, 2003, 36, 9249-9251.	4.8	42
95	Ancillary Ligand Effect on Single-Site Styrene Polymerization:Â Isospecificity of Group 4 Metal Bis(phenolate) Catalysts. Journal of the American Chemical Society, 2003, 125, 4964-4965.	13.7	231
96	ZrCl4(THF)2/Methylaluminoxane as the Catalyst for the Syndiotactic Polymerization of Styrene. Macromolecular Rapid Communications, 2002, 23, 183-186.	3.9	7
97	Critical importance of molecular sieves in titanium(Ⅳ)–calix[4]arene catalyzed epoxidation of allylic alcohols. Tetrahedron Letters, 2001, 42, 1995-1998.	1.4	18
98	Metallocene-Catalyzed Diastereoselective Epoxidation of Allylic Alcohols. Tetrahedron, 2000, 56, 3567-3573.	1.9	23
99	Low molecular mass model compounds of alternating ethylene-styrene copolymers. Macromolecular Chemistry and Physics, 1999, 200, 1086-1088.	2.2	7
100	Synthesis of an alternating ethylene-p-chlorostyrene copolymer. Macromolecular Chemistry and Physics, 1999, 200, 1961-1964.	2.2	7
101	Crystal Structure of the Stereoregular Ethylene-alt-styrene Copolymer Synthesized with a Zirconocene-Based Catalyst. Macromolecules, 1999, 32, 2675-2678.	4.8	26
102	Chemoselectivity in 4-methyl-1,3-pentadiene polymerization in the presence of homogeneous Ti-based catalysts. Macromolecular Rapid Communications, 1997, 18, 183-190.	3.9	16
103	Copolymerization of styrene with(Z)-1,3-pentadiene in the presence of a syndiotactic-specific catalyst. Journal of Polymer Science Part A, 1997, 35, 2697-2702.	2.3	16
104	Syndiotactic-Specific Polymerization of 4-Methyl-1,3-pentadiene:Â Insertion on a Mtâ^'CH3Bond. Macromolecules, 1996, 29, 5500-5501.	4.8	28
105	Mechanism of syndiotacticâ€specific polymerization of styrene. Macromolecular Symposia, 1995, 89, 373-382.	0.7	40
106	Stereochemistry of Polymerization of Some $\hat{I}\pm$ -Olefins in the Presence of Ziegler-Type Catalysts. , 1995, , 217-235.		2
107	Binary copolymerizations of styrene and conjugated diolefins in the presence of cyclopentadienyltitanium trichloride-methylaluminoxane. Macromolecular Chemistry and Physics, 1994, 195, 2623-2631.	2.2	62
108	Zirconium catalysts for the syndiotactic polymerization of styrene. Macromolecular Rapid Communications, 1994, 15, 151-154.	3.9	32

#	Article	IF	CITATIONS
109	Copolymerization of styrene and isoprene: an insight into the mechanism of syndiospecific styrene polyinsertion. Macromolecules, 1992, 25, 4450-4452.	4.8	67
110	Novel aluminoxane-free catalysts for syndiotactic-specific polymerization of styrene. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 265-268.	1.1	91
111	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 277-281.	1.1	67
112	Stereospecific polymerization of propylene in the presence of homogeneous catalysts: ligand-monomer enantioselective interactions. Macromolecules, 1991, 24, 4624-4625.	4.8	44
113	Reactivity of some substituted styrenes in the presence of a syndiotactic specific polymerization catalyst. Macromolecules, 1989, 22, 104-108.	4.8	100
114	Synthesis of syndiotactic poly-1,2-(4-methyl-1,3-pentadiene). Macromolecules, 1989, 22, 2126-2128.	4.8	76
115	Syndiotactic polymerization of styrene: mode of addition to the double bond. Macromolecules, 1988, 21, 24-25.	4.8	46
116	13C-Enriched end groups of polypropylene and poly(1-butene) prepared in the presence of	4.8	63

bis(cyclopentadienyl)titanium diphenyl and methylalumoxane. Macromolecules, 1986, 19, 2703-2706. 116