

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161832/publications.pdf Version: 2024-02-01

Frili

#	Article	IF	CITATIONS
1	Exploring Lorentz Invariance Violation from Ultrahigh-Energy <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi> Rays Observed by LHAASO. Physical Review Letters, 2022, 128, 051102.</mml:math 	7.8	19
2	Control and monitoring software of LHAASO DAQ. Radiation Detection Technology and Methods, 2022, 6, 227-233.	0.8	1
3	Observation of the Crab Nebula with LHAASO-KM2A â^' a performance study *. Chinese Physics C, 2021, 45, 025002.	3.7	67
4	Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 Î ³ -ray Galactic sources. Nature, 2021, 594, 33-36.	27.8	262
5	Search for electron-antineutrinos associated with gravitational-wave events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay *. Chinese Physics C, 2021, 45, 055001.	3.7	1
6	Peta–electron volt gamma-ray emission from the Crab Nebula. Science, 2021, 373, 425-430.	12.6	86
7	Discovery of a New Gamma-Ray Source, LHAASO J0341+5258, with Emission up to 200 TeV. Astrophysical Journal Letters, 2021, 917, L4.	8.3	21
8	Discovery of the Ultrahigh-energy Gamma-Ray Source LHAASO J2108+5157. Astrophysical Journal Letters, 2021, 919, L22.	8.3	28
9	DAQ readout prototype for JUNO. Radiation Detection Technology and Methods, 2021, 5, 600.	0.8	2
10	Kinked-Helix Actinide Polyrotaxanes from Weakly Bound Pseudorotaxane Linkers with Variable Conformations. Inorganic Chemistry, 2020, 59, 4058-4067.	4.0	12
11	Comparison on PMT waveform reconstructions with JUNO prototype. Journal of Instrumentation, 2019, 14, T08002-T08002.	1.2	9
12	Structural Diversity of Bipyridinium-Based Uranyl Coordination Polymers: Synthesis, Characterization, and Ion-Exchange Application. Inorganic Chemistry, 2019, 58, 14075-14084.	4.0	37
13	An SOA-Based Design of JUNO DAQ Online Software. IEEE Transactions on Nuclear Science, 2019, 66, 1199-1203.	2.0	3
14	Bipyridine-Directed Syntheses of Uranyl Compounds Containing Semirigid Dicarboxylate Linkers: Diversity and Consistency in Uranyl Speciation. Inorganic Chemistry, 2019, 58, 6934-6945.	4.0	22
15	Uranyl Compounds Involving a Weakly Bonded Pseudorotaxane Linker: Combined Effect of pH and Competing Ligands on Uranyl Coordination and Speciation. Inorganic Chemistry, 2019, 58, 3271-3282.	4.0	27
16	JUNO DAQ Readout and Event Building Research. IEEE Transactions on Nuclear Science, 2019, 66, 1217-1221.	2.0	2
17	The Flash ADC system and PMT waveform reconstruction for the Daya Bay experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 895, 48-55.	1.6	13
18	Template-Driven Assembly of Rare Hexameric Uranyl-Organic Rotaxane Networks Threaded on Dimeric Uranyl Chains. Crystal Growth and Design, 2018, 18, 3073-3081.	3.0	10

Fei Li

#	Article	IF	CITATIONS
19	Uranyl-Organic Coordination Compounds Incorporating Photoactive Vinylpyridine Moieties: Synthesis, Structural Characterization, and Light-Induced Fluorescence Attenuation. Inorganic Chemistry, 2018, 57, 14772-14785.	4.0	18
20	Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. Physical Review Letters, 2018, 121, 241805.	7.8	168
21	Releasing Metal-Coordination Capacity of Cucurbit[6]uril Macrocycle in Pseudorotaxane Ligands for the Construction of Interwoven Uranyl–Rotaxane Coordination Polymers. Inorganic Chemistry, 2018, 57, 13513-13523.	4.0	29
22	An Insight into Adaptive Deformation of Rigid Cucurbit[6]uril Host in Symmetric [2]Pseudorotaxanes. European Journal of Organic Chemistry, 2018, 2018, 4426-4430.	2.4	5
23	New measurement of \hat{l}_i 13via neutron capture on hydrogen at Daya Bay. Physical Review D, 2016, 93, .	4.7	26
24	Design, characterization, and sensitivity of the supernova trigger system at Daya Bay. Astroparticle Physics, 2016, 75, 38-43.	4.3	10
25	The detector system of the Daya Bay reactor neutrino experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 811, 133-161.	1.6	75
26	The muon system of the Daya Bay Reactor antineutrino experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 773, 8-20.	1.6	33
27	Independent measurement of the neutrino mixing angleÎ,13via neutron capture on hydrogen at Daya Bay. Physical Review D, 2014, 90, .	4.7	42
28	Spectral Measurement of Electron Antineutrino Oscillation Amplitude and Frequency at Daya Bay. Physical Review Letters, 2014, 112, 061801.	7.8	219
29	Improved measurement of electron antineutrino disappearance at Daya Bay. Chinese Physics C, 2013, 37, 011001.	3.7	253
30	Calibration algorithms of RPC detectors at Daya Bay Neutrino Experiment. Journal of Instrumentation, 2013, 8, T03007-T03007.	1.2	8
31	A side-by-side comparison of Daya Bay antineutrino detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 685, 78-97.	1.6	121
32	Design and implementation of DAQ readout system for the Daya Bay Reactor Neutrino Experiment. , 2012, , .		0
33	Observation of Electron-Antineutrino Disappearance at Daya Bay. Physical Review Letters, 2012, 108, 171803.	7.8	1,751
34	DAQ Architecture Design of Daya Bay Reactor Neutrino Experiment. IEEE Transactions on Nuclear Science, 2011, 58, 1723-1727.	2.0	24
35	Design and construction of the BESIII detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 614, 345-399.	1.6	840

 $_{36}$ Online data processing and analyzing in BESIII DAQ. , 2009, , .

Fei Li

#	Article	IF	CITATIONS
37	Design and implementation of BESIII online farm. , 2008, , .		6
38	Antineutrino Energy Spectrum Unfolding Based on the Daya Bay Measurement and Its Applications. Chinese Physics C, 0, , .	3.7	13