
Moritz Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lignocellulosic ethanol production combined with CCS—A study of GHG reductions and potential environmental tradeâ€offs. GCB Bioenergy, 2021, 13, 336-347.	5.6	18
2	Comparative life cycle assessment of bioâ€based insulation materials: Environmental and economic performances. GCB Bioenergy, 2021, 13, 979-998.	5.6	19
3	A parsimonious model for calculating the greenhouse gas emissions of miscanthus cultivation using current commercial practice in the United Kingdom. GCB Bioenergy, 2021, 13, 1087-1098.	5.6	12
4	Perennial rhizomatous grasses: Can they really increase species richness and abundance in arable land?—A metaâ€analysis. GCB Bioenergy, 2020, 12, 968-978.	5.6	14
5	Bridging the Gap Between Biofuels and Biodiversity Through Monetizing Environmental Services of <i>Miscanthus</i> Cultivation. Earth's Future, 2020, 8, .	6.3	18
6	Social Aspects in the Assessment of Biobased Value Chains. Sustainability, 2020, 12, 9843.	3.2	12
7	Comparative environmental and economic life cycle assessment of biogas production from perennial wild plant mixtures and maize (<i>Zea mays</i> L.) in southwest Germany. GCB Bioenergy, 2020, 12, 571-585.	5.6	29
8	Prospects of Bioenergy Cropping Systems for A More Social-Ecologically Sound Bioeconomy. Agronomy, 2019, 9, 605.	3.0	89
9	Environmental and Economic Performance of Yacon (Smallanthus sonchifolius) Cultivated for Fructooligosaccharide Production. Sustainability, 2019, 11, 4581.	3.2	5
10	Life cycle assessment of ethanol production from miscanthus: A comparison of production pathways at two European sites. GCB Bioenergy, 2019, 11, 269-288.	5.6	70
11	Potential tradeâ€offs of employing perennial biomass crops for the bioeconomy in the EU by 2050: Impacts on agricultural markets in the EU and the world. GCB Bioenergy, 2019, 11, 483-504.	5.6	21
12	Economic and environmental performance of miscanthus cultivated on marginal land for biogas production. GCB Bioenergy, 2019, 11, 34-49.	5.6	65
13	Potential of a short rotation coppice poplar as a feedstock for platform chemicals and lignin-based building blocks. Industrial Crops and Products, 2018, 123, 698-706.	5.2	10
14	CO2 Footprint of the Seeds of Rubber (Hevea brasiliensis) as a Biodiesel Feedstock Source. Forests, 2018, 9, 548.	2.1	6
15	Relevance of environmental impact categories for perennial biomass production. GCB Bioenergy, 2017, 9, 215-228.	5.6	36
16	Progress in upscaling <i>Miscanthus</i> biomass production for the European bioâ€economy with seedâ€based hybrids. GCB Bioenergy, 2017, 9, 6-17.	5.6	156
17	Optimizing GHG emission and energy-saving performance of miscanthus-based value chains. Biomass Conversion and Biorefinery, 2017, 7, 139-152.	4.6	17
18	Site-Specific Management of Miscanthus Genotypes for Combustion and Anaerobic Digestion: A Comparison of Energy Yields. Frontiers in Plant Science, 2017, 8, 347.	3.6	34

MORITZ WAGNER

#	Article	IF	CITATIONS
19	Harvest Time Optimization for Combustion Quality of Different Miscanthus Genotypes across Europe. Frontiers in Plant Science, 2017, 8, 727.	3.6	27
20	Novel Miscanthus Germplasm-Based Value Chains: A Life Cycle Assessment. Frontiers in Plant Science, 2017, 8, 990.	3.6	24
21	Economic and Environmental Assessment of Seed and Rhizome Propagated Miscanthus in the UK. Frontiers in Plant Science, 2017, 8, 1058.	3.6	66
22	Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production?. Sustainability, 2017, 9, 5.	3.2	57
23	Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Frontiers in Plant Science, 2016, 7, 1620.	3.6	160