Alain Farron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11617899/publications.pdf

Version: 2024-02-01

		331670	302126
52	1,585	21	39
papers	citations	h-index	g-index
F.2	F 2	E 2	1122
53	53	53	1122
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Risks of loosening of a prosthetic glenoid implanted in retroversion. Journal of Shoulder and Elbow Surgery, 2006, 15, 521-526.	2.6	328
2	Effect of humeral stem design on humeral position and range of motion in reverse shoulder arthroplasty. International Orthopaedics, 2015, 39, 2205-2213.	1.9	167
3	Effect of supraspinatus deficiency on humerus translation and glenohumeral contact force during abduction. Clinical Biomechanics, 2007, 22, 645-651.	1.2	94
4	Influence of glenohumeral conformity on glenoid stresses after total shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 2006, 15, 515-520.	2.6	78
5	Bankart repair for recurrent anterior glenohumeral instability: Results at twenty-nine years' follow-up. Journal of Shoulder and Elbow Surgery, 2006, 15, 203-207.	2.6	74
6	Bone–cement interface of the glenoid component: Stress analysis for varying cement thickness. Clinical Biomechanics, 2005, 20, 710-717.	1.2	61
7	Arm position during daily activity. Gait and Posture, 2008, 28, 581-587.	1.4	59
8	Outcome evaluation in shoulder surgery using 3D kinematics sensors. Gait and Posture, 2007, 25, 523-532.	1.4	56
9	What is the best glenoid configuration in onlay reverse shoulder arthroplasty?. International Orthopaedics, 2018, 42, 1339-1346.	1.9	56
10	Biomechanical consequences of humeral component malpositioning after anatomical total shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 2010, 19, 1184-1190.	2.6	46
11	Importance of a three-dimensional measure of humeral head subluxation in osteoarthritic shoulders. Journal of Shoulder and Elbow Surgery, 2015, 24, 295-301.	2.6	39
12	Traumatic recurrent anterior dislocation of the shoulder: two- to four-year follow-up of an anatomic open procedure. Journal of Shoulder and Elbow Surgery, 2004, 13, 30-34.	2.6	38
13	A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization. Medical Engineering and Physics, 2010, 32, 1050-1056.	1.7	32
14	Total shoulder arthroplasty: Downward inclination of the glenoid component to balance supraspinatus deficiency. Journal of Shoulder and Elbow Surgery, 2009, 18, 360-365.	2.6	31
15	Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures?. Journal of Shoulder and Elbow Surgery, 2011, 20, 1074-1081.	2.6	31
16	An algorithm to allow humerus translation in the indeterminate problem of shoulder abduction. Medical Engineering and Physics, 2008, 30, 710-716.	1.7	29
17	Estimating dominant upper-limb segments during daily activity. Gait and Posture, 2008, 27, 368-375.	1.4	29
18	Effects of glenoid inclination and acromion index on humeral head translation and glenoid articular cartilage strain. Journal of Shoulder and Elbow Surgery, 2017, 26, 157-164.	2.6	29

#	Article	IF	CITATIONS
19	Deep learning for the rapid automatic quantification and characterization of rotator cuff muscle degeneration from shoulder CT datasets. European Radiology, 2021, 31, 181-190.	4.5	28
20	A statistical shape model to predict the premorbid glenoid cavity. Journal of Shoulder and Elbow Surgery, 2018, 27, 1800-1808.	2.6	25
21	Detection of the movement of the humerus during daily activity. Medical and Biological Engineering and Computing, 2009, 47, 467-474.	2.8	23
22	Distribution of arm velocity and frequency of arm usage during daily activity: Objective outcome evaluation after shoulder surgery. Gait and Posture, 2013, 38, 247-252.	1.4	22
23	Cement stress predictions after anatomic total shoulder arthroplasty are correlated with preoperative glenoid bone quality. Journal of Shoulder and Elbow Surgery, 2017, 26, 1644-1652.	2.6	21
24	Automated CT bone segmentation using statistical shape modelling and local template matching. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22, 1303-1310.	1.6	20
25	Activities of daily living with reverse prostheses: importance of scapular compensation for functional mobility of the shoulder. Journal of Shoulder and Elbow Surgery, 2013, 22, 948-953.	2.6	19
26	Comparison of an EMG-based and a stress-based method to predict shoulder muscle forces. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1272-1279.	1.6	15
27	Modelling of the human shoulder as a parallel mechanism without constraints. Mechanism and Machine Theory, 2016, 100, 120-137.	4.5	15
28	Alteration and recovery of arm usage in daily activities after rotator cuff surgery. Journal of Shoulder and Elbow Surgery, 2015, 24, 1346-1352.	2.6	13
29	Importance of polyethylene thickness in total shoulder arthroplasty: A finite element analysis. Clinical Biomechanics, 2012, 27, 443-448.	1.2	12
30	Evaluation of muscular activity duration in shoulders with rotator cuff tears using inertial sensors and electromyography. Physiological Measurement, 2014, 35, 2389-2400.	2.1	10
31	Effect of partial-thickness tear on loading capacities of the supraspinatus tendon: a finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 875-882.	1.6	10
32	Reduction of scapulohumeral subluxation with posterior augmented glenoid implants in anatomic total shoulder arthroplasty: Short-term 3D comparison between pre- and post-operative CT. Orthopaedics and Traumatology: Surgery and Research, 2020, 106, 681-686.	2.0	10
33	Impact of a fracture liaison service on patient management after an osteoporotic fracture: the CHUV FLS. Swiss Medical Weekly, 2018, 148, w14579.	1.6	9
34	Is preoperative glenoid bone mineral density associated with aseptic glenoid implant loosening in anatomic total shoulder arthroplasty?. BMC Musculoskeletal Disorders, 2021, 22, 49.	1.9	8
35	Heightened clinical utility of smartphone versus body-worn inertial system for shoulder function B-B score. PLoS ONE, 2017, 12, e0174365.	2.5	8
36	A simulation framework for humeral head translations. Medical Engineering and Physics, 2017, 49, 140-147.	1.7	7

#	Article	IF	CITATIONS
37	Measurement Properties of the Smartphone-Based B-B Score in Current Shoulder Pathologies. Sensors, 2015, 15, 26801-26817.	3.8	6
38	A minimal set of coordinates for describing humanoid shoulder motion. , 2013, , .		5
39	Muscle moment-arms: a key element in muscle-force estimation. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 506-513.	1.6	5
40	Improving anterior deltoid activity in a musculoskeletal shoulder model $\hat{a} \in \hat{u}$ an analysis of the torque-feasible space at the sternoclavicular joint. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 450-463.	1.6	4
41	Muscle co-contraction in an upper limb musculoskeletal model: EMG-assisted vs. standard load-sharing. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 137-150.	1.6	4
42	Feasibility of an alternative method to estimate glenohumeral joint center from videogrammetry measurements and CT/MRI of patients. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 33-42.	1.6	2
43	Association of the Posterior Acromion Extension with Glenoid Retroversion: A CT Study in Normal and Osteoarthritic Shoulders. Journal of Clinical Medicine, 2022, 11, 351.	2.4	2
44	Age―and sexâ€specific normativevalues of bone mineral densityin theadultglenoid. Journal of Orthopaedic Research, 2022, , .	2.3	2
45	Biomechanical comparison of glenoid implants with adaptable and fixed backside curvatures in anatomic total shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 2018, 27, 1656-1663.	2.6	1
46	A Robotic Glenohumeral Simulator for Investigating Prosthetic Implant Subluxation. Journal of Biomechanical Engineering, 2020, 142 , .	1.3	1
47	A Matlab toolbox for scaled-generic modeling of shoulder and elbow. Scientific Reports, 2021, 11, 20806.	3.3	1
48	Fiabilité d'un score fonctionnel basé sur l'analyse de deux mouvements fondamentaux de l'épa Kinesitherapie, 2012, 12, 24-25.	aule. 0.1	0
49	Dynamical biomechanical model of the shoulder for muscle-force estimation. , 2012, , .		0
50	Effect of a pathological scapular tilt after total shoulder arthroplasty. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 1196-1201.	1.6	0
51	Biomechanics of Reverse Shoulder Arthroplasty: Contribution of Computer Modeling. , 2016, , 115-122.		0
52	Réduction de la subluxation scapulo-humérale par implant glénoÃ ⁻ dien anatomique augmenté : comparaison scanographique 3D pré- et postopératoire à court terme. Revue De Chirurgie Orthopedique Et Traumatologique, 2020, 106, 388-394.	0.0	0