Steven D Carson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11615950/publications.pdf

Version: 2024-02-01

471509 454955 33 904 17 30 citations h-index g-index papers 34 34 34 749 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Albumin Enhances the Rate at Which Coxsackievirus B3 Strain 28 Converts to A-Particles. Journal of Virology, 2020, 94, .	3.4	6
2	Protease-Mediated Growth of Staphylococcus aureus on Host Proteins Is <i>opp3</i> Dependent. MBio, 2019, 10, .	4.1	31
3	MOPS and coxsackievirus B3 stability. Virology, 2017, 501, 183-187.	2.4	5
4	Three capsid amino acids notably influence coxsackie B3 virus stability. Journal of General Virology, 2016, 97, 60-68.	2.9	6
5	Kinetic Models for Receptor-Catalyzed Conversion of Coxsackievirus B3 to A-Particles. Journal of Virology, 2014, 88, 11568-11575.	3.4	11
6	HeLa cell heterogeneity and coxsackievirus B3 cytopathic effect: Implications for interâ€laboratory reproducibility of results. Journal of Medical Virology, 2013, 85, 677-683.	5.0	10
7	Variations of Coxsackievirus B3 Capsid Primary Structure, Ligands, and Stability Are Selected for in a Coxsackievirus and Adenovirus Receptor-Limited Environment. Journal of Virology, 2011, 85, 3306-3314.	3.4	26
8	Endogenous low-level expression of the coxsackievirus and adenovirus receptor enables coxsackievirus B3 infection of RD cells. Journal of General Virology, 2007, 88, 3031-3038.	2.9	12
9	Monoclonal Antibody against Mouse CAR following Genetic Immunization. Hybridoma, 2004, 23, 19-22.	0.4	4
10	Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology, 2004, 329, 381-394.	2.4	131
11	Coxsackievirus and Adenovirus Receptor (CAR) Is Modified and Shed in Membrane Vesicles. Biochemistry, 2004, 43, 8136-8142.	2.5	8
12	Caspase-3 activation and ERK phosphorylation during CVB3 infection of cells: influence of the coxsackievirus and adenovirus receptor and engineered variants. Virus Research, 2003, 92, 179-186.	2.2	37
13	Coxsackievirus and Adenovirus Receptor (CAR) Binds Immunoglobulins. Biochemistry, 2001, 40, 14324-14329.	2.5	23
14	Receptor for the group B coxsackieviruses and adenoviruses: CAR. Reviews in Medical Virology, 2001, 11, 219-226.	8.3	64
15	Limited proteolysis of the coxsackievirus and adenovirus receptor (CAR) on HeLa cells exposed to trypsin. FEBS Letters, 2000, 484, 149-152.	2.8	21
16	Expression of the Coxsackievirus and Adenovirus Receptor in Cultured Human Umbilical Vein Endothelial Cells: Regulation in Response to Cell Density. Journal of Virology, 1999, 73, 7077-7079.	3.4	70
17	Tissue Factor Cytoplasmic Domain Peptide Is Multiply Phosphorylated in Vitro. Biochemistry, 1997, 36, 7869-7875.	2.5	45
18	Purification of the Putative Coxsackievirus B Receptor from HeLa Cells. Biochemical and Biophysical Research Communications, 1997, 233, 325-328.	2.1	85

#	Article	IF	CITATIONS
19	Human placental tissue factor: Protease susceptibility of extracellular and cytoplasmic domains. Thrombosis Research, 1995, 79, 451-459.	1.7	3
20	Monocyte Tissue Factor in Treated Hodgkin's Disease. Leukemia and Lymphoma, 1994, 12, 259-263.	1.3	3
21	Lipoprotein Associated Coagulation Inhibitor, Factor VII, Antithrombin III, and Monocyte Tissue Factor Following Surgery. Thrombosis and Haemostasis, 1991, 66, 534-539.	3.4	19
22	The coagulopathy of childhood leukemia thrombin activation or primary fibrinolysis?. Cancer, 1990, 66, 716-721.	4.1	37
23	Tissue factor antigen and activity are not expressed on the surface of intact cells isolated from an acute promyelocytic leukemia patient. Thrombosis Research, 1990, 59, 159-170.	1.7	16
24	Dipyridamole inhibits O2â^' release and expression of tissue factor activity by peripheral blood monocytes stimulated with lipopolysaccharide. Thrombosis Research, 1990, 60, 141-156.	1.7	18
25	Effects of lipid-binding proteins APO A-I, APO A-II, \hat{I}^2 2-glycoprotein I, and C-reactive protein on activation of factor X by tissue factor - factor VIIa. Thrombosis Research, 1988, 50, 669-678.	1.7	13
26	Continuous chromogenic tissue factor assay: Comparison to clot-based assays and sensitivity established using pure tissue factor. Thrombosis Research, 1987, 47, 379-387.	1.7	46
27	Tissue factor activity in hela cells measured with a continuous chromogenic assay and elisa reader. Thrombosis Research, 1986, 41, 185-195.	1.7	39
28	Computerized analysis of enzyme cascade reactions using continuous rate data obtained with an ELISA reader. Computer Programs in Biomedicine, 1985, 19, 151-157.	0.7	25
29	Cadmium causes vesicle leakage under conditions which favor reconstitution of tissue factor-vesicle complexes. Journal of Membrane Biology, 1983, 75, 123-127.	2.1	3
30	Chromatographic depletion of lipoproteins from plasma and recovery of apolipoproteins. Lipids and Lipid Metabolism, 1983, 750, 317-321.	2.6	10
31	Plasma high density lipoproteins inhibit the activation of coagulation factor X by factor VIIa and tissue factor. FEBS Letters, 1981, 132, 37-40.	2.8	59
32	Coagulation factor III (tissue factor) interaction with phospholipid vesicles induced by cadmium: characterization of the reconstituted protein-membrane complex. Bioscience Reports, 1981, 1, 197-205.	2.4	5
33	Lipid Activation of Coagulation Factor III Apoprotein (Tissue Factor) - Reconstitution of the Protein-Membrane Complex. Thrombosis and Haemostasis, 1980, 44, 012-015.	3.4	13