
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11615359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fighting Females: Neural and Behavioral Consequences of Social Defeat Stress in Female Mice. Biological Psychiatry, 2019, 86, 657-668.	1.3	121
2	Persistent increase of I.V. cocaine self-administration in a subgroup of C57BL/6J male mice after social defeat stress. Psychopharmacology, 2019, 236, 2027-2037.	3.1	18
3	Persistent escalation of alcohol consumption by mice exposed to brief episodes of social defeat stress: suppression by CRF-R1 antagonism. Psychopharmacology, 2018, 235, 1807-1820.	3.1	38
4	A Role for Prefrontal Cortical NMDA Receptors in Murine Alcohol-Heightened Aggression. Neuropsychopharmacology, 2018, 43, 1224-1234.	5.4	29
5	The Urge to Fight: Persistent Escalation by Alcohol and Role of NMDA Receptors in Mice. Frontiers in Behavioral Neuroscience, 2018, 12, 206.	2.0	22
6	Escalated cocaine "binges―in rats: enduring effects of social defeat stress or intra-VTA CRF. Psychopharmacology, 2017, 234, 2823-2836.	3.1	22
7	Prevention and reversal of social stress-escalated cocaine self-administration in mice by intra-VTA CRFR1 antagonism. Psychopharmacology, 2017, 234, 2813-2821.	3.1	31
8	Maladaptive choices by defeated rats: link between rapid approach to social threat and escalated cocaine self-administration. Psychopharmacology, 2016, 233, 3173-3186.	3.1	7
9	Episodic Social Stress-Escalated Cocaine Self-Administration: Role of Phasic and Tonic Corticotropin Releasing Factor in the Anterior and Posterior Ventral Tegmental Area. Journal of Neuroscience, 2016, 36, 4093-4105.	3.6	65
10	Effects of <i>Gabra2</i> Point Mutations on Alcohol Intake: Increased Bingeâ€Like and Blunted Chronic Drinking by Mice. Alcoholism: Clinical and Experimental Research, 2016, 40, 2445-2455.	2.4	10
11	CRF type 1 receptor antagonism in ventral tegmental area of adolescent rats during social defeat: prevention of escalated cocaine self-administration in adulthood and behavioral adaptations during adolescence. Psychopharmacology, 2016, 233, 2727-2736.	3.1	25
12	Dissociation of μâ€opioid receptor and <scp>CRF</scp> â€ <scp>R</scp> 1 antagonist effects on escalated ethanol consumption and <scp>mPFC</scp> serotonin in <scp>C</scp> 57 <scp>BL</scp> /6 <scp>J</scp> mice. Addiction Biology, 2016, 21, 111-124.	2.6	18
13	Social stress-escalated intermittent alcohol drinking: modulation by CRF-R1 in the ventral tegmental area and accumbal dopamine in mice. Psychopharmacology, 2016, 233, 681-690.	3.1	54
14	Corticotropin Releasing Factor Binding Protein and <scp>CRF</scp> ₂ Receptors in the Ventral Tegmental Area: Modulation of Ethanol Binge Drinking in <scp>C</scp> 57 <scp>BL</scp> /6J Mice. Alcoholism: Clinical and Experimental Research, 2015, 39, 1609-1618.	2.4	56
15	Alcohol and violence: neuropeptidergic modulation of monoamine systems. Annals of the New York Academy of Sciences, 2015, 1349, 96-118.	3.8	53
16	Aggression and increased glutamate in the mPFC during withdrawal from intermittent alcohol in outbred mice. Psychopharmacology, 2015, 232, 2889-2902.	3.1	37
17	Chronic high-dose creatine has opposing effects on depression-related gene expression and behavior in intact and sex hormone-treated gonadectomized male and female rats. Pharmacology Biochemistry and Behavior, 2015, 130, 22-33.	2.9	18
18	Social stress and escalated drug self-administration in mice II. Cocaine and dopamine in the nucleus accumbens. Psychopharmacology, 2015, 232, 1003-1010.	3.1	39

#	Article	IF	CITATIONS
19	Social stress and escalated drug self-administration in mice I. Alcohol and corticosterone. Psychopharmacology, 2015, 232, 991-1001.	3.1	69
20	Individual differences in anhedonic and accumbal dopamine responses to chronic social stress and their link to cocaine self-administration in female rats. Psychopharmacology, 2015, 232, 825-834.	3.1	52
21	α2-containing GABA(A) receptors: a requirement for midazolam-escalated aggression and social approach in mice. Psychopharmacology, 2015, 232, 4359-4369.	3.1	17
22	Increased mesocorticolimbic dopamine during acute and repeated social defeat stress: modulation by corticotropin releasing factor receptors in the ventral tegmental area. Psychopharmacology, 2015, 232, 4469-4479.	3.1	69
23	Prevention of Alcohol-Heightened Aggression by CRF-R1 Antagonists in Mice: Critical Role for DRN-PFC Serotonin Pathway. Neuropsychopharmacology, 2014, 39, 2874-2883.	5.4	28
24	Social Stress and CRF–Dopamine Interactions in the VTA: Role in Long-Term Escalation of Cocaine Self-Administration. Journal of Neuroscience, 2014, 34, 6659-6667.	3.6	85
25	Alcohol in excess: CRF1 receptors in the rat and mouse VTA and DRN. Psychopharmacology, 2013, 225, 313-327.	3.1	59
26	Direct CRFR1 antagonism within the VTA prevents the induction and expression of neural crossâ€sensitization to cocaine caused by social defeat stress. FASEB Journal, 2013, 27, 659.9.	0.5	0
27	Behavioral characterization of escalated aggression induced by GABAB receptor activation in the dorsal raphe nucleus. Psychopharmacology, 2012, 224, 155-166.	3.1	26
28	NMDA receptor antagonism: escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology, 2012, 224, 167-177.	3.1	39
29	Sex differences in behavioral and neural cross-sensitization and escalated cocaine taking as a result of episodic social defeat stress in rats. Psychopharmacology, 2012, 224, 179-188.	3.1	84
30	Persistent Escalation of Alcohol Drinking in C57BL/6J Mice With Intermittent Access to 20% Ethanol. Alcoholism: Clinical and Experimental Research, 2011, 35, 1938-1947.	2.4	300
31	Prevention of social stress-escalated cocaine self-administration by CRF-R1 antagonist in the rat VTA. Psychopharmacology, 2011, 218, 257-269.	3.1	76
32	Blunted accumbal dopamine response to cocaine following chronic social stress in female rats: exploring a link between depression and drug abuse. Psychopharmacology, 2011, 218, 271-279.	3.1	71
33	GABAA receptors in the dorsal raphé nucleus of mice: escalation of aggression after alcohol consumption. Psychopharmacology, 2010, 211, 467-477.	3.1	44
34	6-Hydroxydopamine lesions enhance progesterone-facilitated lordosis of rats and hamsters, independent of effects on motor behavior. Physiology and Behavior, 2010, 99, 218-224.	2.1	5
35	GABA _B Receptor Modulation of Serotonin Neurons in the Dorsal Raphé Nucleus and Escalation of Aggression in Mice. Journal of Neuroscience, 2010, 30, 11771-11780.	3.6	98
36	MK-801 infusions to the ventral tegmental area and ventromedial hypothalamus produce opposite effects on lordosis of hormone-primed rats. Pharmacology Biochemistry and Behavior, 2007, 86, 377-385.	2.9	19

#	Article	IF	CITATIONS
37	Role of Alcohol Consumption in Escalation to Violence. Annals of the New York Academy of Sciences, 2006, 1036, 278-289.	3.8	33
38	Escalated Aggressive Behavior: New Pharmacotherapeutic Approaches and Opportunities. Annals of the New York Academy of Sciences, 2006, 1036, 336-355.	3.8	70
39	Benzodiazepines and heightened aggressive behavior in rats: reduction by GABAA/?1 receptor antagonists. Psychopharmacology, 2005, 178, 232-240.	3.1	41
40	Escalated aggression as a reward: corticosterone and GABAA receptor positive modulators in mice. Psychopharmacology, 2005, 182, 116-127.	3.1	87
41	Effects of midbrain lesions on lordosis and ultrasound production. Physiology and Behavior, 2004, 82, 791-804.	2.1	8
42	Alcohol, GABAA-Benzodiazepine Receptor Complex, and Aggression. , 2002, 13, 139-171.		42
43	Repeated alcohol: behavioral sensitization and alcohol-heightened aggression in mice. Psychopharmacology, 2002, 160, 39-48.	3.1	76
44	Alcohol, allopregnanolone and aggression in mice. Psychopharmacology, 2001, 153, 473-483.	3.1	103
45	Fos expression in female hamsters after various stimuli associated with mating. Physiology and Behavior, 2000, 70, 557-566.	2.1	11
46	Protein Synthesis in the Medial Preoptic Area Is Important for the Mating-Induced Decrease in Estrus Duration in Hamsters. Hormones and Behavior, 1999, 35, 177-185.	2.1	11
47	Alcohol and "bursts―of aggressive behavior: ethological analysis of individual differences in rats. Psychopharmacology, 1992, 107, 551-563.	3.1	89
48	Intravenous administration of progesterone and the onset of receptivity in female hamsters. Physiology and Behavior, 1991, 49, 679-683.	2.1	7
49	Ventral tegmental lesions impair sexual receptivity in female hamsters. Brain Research Bulletin, 1991, 26, 877-883.	3.0	24
50	Sexual differentiation and the effects of alcohol on aggressive behavior in mice. Pharmacology Biochemistry and Behavior, 1990, 35, 357-362.	2.9	15
51	Implants of testosterone into the septal forebrain activate aggressive behavior in male mice. Aggressive Behavior, 1990, 16, 249-258.	2.4	19
52	Facilitation of sexual receptivity in hamsters by simultaneous progesterone implants into the VMH and ventral mesencephalon. Hormones and Behavior, 1990, 24, 139-151.	2.1	52
53	Maternal aggression in mice and rats towards male and female conspecifics. Aggressive Behavior, 1989, 15, 443-453.	2.4	56
54	Facilitation of sexual receptivity by hypothalamic and midbrain implants of progesterone in female hamsters. Physiology and Behavior, 1989, 46, 655-660.	2.1	56

#	Article	IF	CITATIONS
55	Site-specific inhibition of receptivity by intracranial anisomycin in hamsters. Brain Research Bulletin, 1988, 21, 581-585.	3.0	14
56	Alcohol Effects on the Aggressive Behaviour of Squirrel Monkeys and Mice are Modulated by Testosterone. Topics in the Neurosciences, 1987, , 223-244.	0.2	20
57	Testosterone modulates the effects of ethanol on male mouse aggression. Psychopharmacology, 1985, 86, 286-290.	3.1	45
58	Heightened aggressive behavior by animals interacting with alcohol-treated conspecifics: Studies with mice, rats and squirrel monkeys. Pharmacology Biochemistry and Behavior, 1984, 20, 349-353.	2.9	37
59	Aggression persists after ovariectomy in female rats. Hormones and Behavior, 1984, 18, 177-190.	2.1	90
60	Inhibition of sexual receptivity after intracranial cycloheximide infusions in female hamsters. Brain Research Bulletin, 1983, 11, 633-636.	3.0	9
61	Hormone-Drug Interactions and Their Influence on Aggressive Behavior. , 1983, , 313-347.		15
62	Sexual Dimorphism in the Hormonal Control of Aggressive Behavior of Rats. Pharmacology Biochemistry and Behavior, 1981, 14, 89-93.	2.9	58
63	Modification of nuclear retention of [3H]estradiol by cells of the hypothalamus as a function of early hormone experience. Brain Research, 1978, 159, 416-420.	2.2	6
64	Aromatization and the induction of male sexual behavior in male, female, and androgenized female hamsters. Hormones and Behavior, 1978, 11, 401-413.	2.1	62
65	The inhibitory actions of progesterone: Effects on male and female sexual behavior of the hamster. Hormones and Behavior, 1978, 11, 28-41.	2.1	20
66	The Excitation and Inhibition of Sexual Receptivity in Female Hamsters by Progesterone: Time and Dose Relationships, Neural Localization and Mechanisms of Action. Endocrinology, 1976, 99, 1519-1527.	2.8	70
67	Differential sensitivity of mounting and lordosis control systems to early androgen treatment in male and female hamsters. Hormones and Behavior, 1975, 6, 197-209.	2.1	39
68	Comparative Effectiveness of Testosterone, Androstenedione and Dihydrotestosterone in Maintaining Mating Behavior in the Castrated Male Hamster. Endocrinology, 1974, 95, 1674-1679.	2.8	76
69	Effects of repeated testing on sexual behavior of the female rat Journal of Comparative and Physiological Psychology, 1973, 85, 195-202.	1.8	56
70	Effects of coital stimulation upon behavior of the female rat Journal of Comparative and Physiological Psychology, 1972, 78, 400-408.	1.8	254
71	Effects of mounts without intromission upon the behavior of female rats during the onset of estrogen-induced heat. Physiology and Behavior, 1971, 7, 643-645.	2.1	185
72	The relationship between levels of exogenous hormones and the display of lordosis by the female rat. Hormones and Behavior, 1971, 2, 287-297.	2.1	193