Eduardo Leonardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161328/publications.pdf

Version: 2024-02-01

36 papers 7,073 citations

257450 24 h-index 35 g-index

42 all docs 42 docs citations

times ranked

42

7647 citing authors

#	Article	IF	CITATIONS
1	Netrin-1 Is Required for Commissural Axon Guidance in the Developing Vertebrate Nervous System. Cell, 1996, 87, 1001-1014.	28.9	1,163
2	Neurogenesis-Dependent and -Independent Effects of Fluoxetine in an Animal Model of Anxiety/Depression. Neuron, 2009, 62, 479-493.	8.1	1,080
3	Deleted in Colorectal Cancer (DCC) Encodes a Netrin Receptor. Cell, 1996, 87, 175-185.	28.9	934
4	Sernaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron, 1995, 14, 949-959.	8.1	496
5	Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature, 1997, 386, 833-838.	27.8	474
6	Antidepressants recruit new neurons to improve stress response regulation. Molecular Psychiatry, 2011, 16, 1177-1188.	7.9	406
7	Hepatocyte Growth Factor/Scatter Factor Is an Axonal Chemoattractant and a Neurotrophic Factor for Spinal Motor Neurons. Neuron, 1996, 17, 1157-1172.	8.1	387
8	5-HT1A Autoreceptor Levels Determine Vulnerability to Stress and Response to Antidepressants. Neuron, 2010, 65, 40-52.	8.1	373
9	Experience Dictates Stem Cell Fate in the Adult Hippocampus. Neuron, 2011, 70, 908-923.	8.1	183
10	P5-HT1A receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology, 2014, 231, 623-636.	3.1	172
11	Serotonin-1A Autoreceptors Are Necessary and Sufficient for the Normal Formation of Circuits Underlying Innate Anxiety. Journal of Neuroscience, 2011, 31, 6008-6018.	3.6	169
12	Genetics of Affective and Anxiety Disorders. Annual Review of Psychology, 2006, 57, 117-137.	17.7	156
13	A Novel Method for Chronic Social Defeat Stress in Female Mice. Neuropsychopharmacology, 2018, 43, 1276-1283.	5.4	155
14	Anxiety as a Developmental Disorder. Neuropsychopharmacology, 2008, 33, 134-140.	5 . 4	153
15	Flexible Accelerated STOP Tetracycline Operator-Knockin (FAST): A Versatile and Efficient New Gene Modulating System. Biological Psychiatry, 2010, 67, 770-773.	1.3	101
16	Modeling treatment-resistant depression. Neuropharmacology, 2011, 61, 408-413.	4.1	76
17	Rethinking 5-HT _{1A} Receptors: Emerging Modes of Inhibitory Feedback of Relevance to Emotion-Related Behavior. ACS Chemical Neuroscience, 2013, 4, 72-83.	3.5	76
18	Molecular heterogeneity along the dorsal–ventral axis of the murine hippocampal CA1 field: a microarray analysis of gene expression. Neuroscience, 2006, 137, 177-186.	2.3	72

#	Article	IF	CITATIONS
19	Developmental Effects of Serotonin 1A Autoreceptors on Anxiety and Social Behavior. Neuropsychopharmacology, 2014, 39, 291-302.	5.4	72
20	Early life stress delays hippocampal development and diminishes the adult stem cell pool in mice. Scientific Reports, 2019, 9, 4120.	3.3	57
21	Serotonin Signaling through Prefrontal Cortex 5-HT 1A Receptors during Adolescence Can Determine Baseline Mood-Related Behaviors. Cell Reports, 2017, 18, 1144-1156.	6.4	50
22	5-HT1A Autoreceptors in the Dorsal Raphe Nucleus Convey Vulnerability to Compulsive Cocaine Seeking. Neuropsychopharmacology, 2016, 41, 1210-1222.	5.4	38
23	Is there a role for young hippocampal neurons in adaptation to stress?. Behavioural Brain Research, 2012, 227, 371-375.	2.2	36
24	Hippocampal Subfields and Major Depressive Disorder. Biological Psychiatry, 2015, 77, 210-211.	1.3	30
25	Targeting Kruppel-like Factor 9 in Excitatory Neurons Protects against Chronic Stress-Induced Impairments in Dendritic Spines and Fear Responses. Cell Reports, 2018, 23, 3183-3196.	6.4	28
26	A New Vector for Cloning Large Eukaryotic DNA Segments in Escherichia coli. Nature Biotechnology, 1990, 8, 841-844.	17.5	24
27	Adolescent but not adult-born neurons are critical for susceptibility to chronic social defeat. Frontiers in Behavioral Neuroscience, 2014, 8, 289.	2.0	22
28	Disruption of 5-HT 1A function in adolescence but not early adulthood leads to sustained increases of anxiety. Neuroscience, 2016, 321, 210-221.	2.3	22
29	Global State Measures of the Dentate Gyrus Gene Expression System Predict Antidepressant-Sensitive Behaviors. PLoS ONE, 2014, 9, e85136.	2.5	21
30	Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis. Hippocampus, 2018, 28, 586-601.	1.9	20
31	Developmental impact of glutamate transporter overexpression on dopaminergic neuron activity and stereotypic behavior. Molecular Psychiatry, 2022, 27, 1515-1526.	7.9	6
32	5-HT _{1A} Agonist Properties Contribute to a Robust Response to Vilazodone in the Novelty Suppressed Feeding Paradigm. International Journal of Neuropsychopharmacology, 2016, 19, pyw057.	2.1	4
33	The power of positivity. Nature, 2015, 522, 294-295.	27.8	3
34	An opening for humor in melancholy. Nature Neuroscience, 2017, 20, 1657-1658.	14.8	2
35	Animal models of anxiety disorders: behavioral and genetic approaches. , 0, , 156-167.		1
36	F12. Bed Nucleus of Stria Terminalis (BNST) CRF Circuits for Anxiety-Like Behaviors. Biological Psychiatry, 2018, 83, S241-S242.	1.3	0