
Cameron A Best

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161324/publications.pdf Version: 2024-02-01

CAMEDON & REST

#	Article	IF	CITATIONS
1	Electrospun Tissue-Engineered Arterial Graft Thickness Affects Long-Term Composition and Mechanics. Tissue Engineering - Part A, 2021, 27, 593-603.	3.1	11
2	Zoledronate alters natural progression of tissueâ€engineered vascular grafts. FASEB Journal, 2021, 35, e21849.	0.5	3
3	Different degradation rates of nanofiber vascular grafts in small and large animal models. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 203-214.	2.7	25
4	Tissue Engineered Vascular Graft Recipient Interleukin 10 Status Is Critical for Preventing Thrombosis. Advanced Healthcare Materials, 2020, 9, e2001094.	7.6	8
5	Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Science Translational Medicine, 2020, 12, .	12.4	81
6	Early natural history of neotissue formation in tissue-engineered vascular grafts in a murine model. Regenerative Medicine, 2019, 14, 389-408.	1.7	23
7	Mouse Model of Tracheal Replacement With Electrospun Nanofiber Scaffolds. Annals of Otology, Rhinology and Laryngology, 2019, 128, 391-400.	1.1	15
8	Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomaterialia, 2019, 94, 183-194.	8.3	34
9	Factors Influencing Poor Outcomes in Synthetic Tissueâ€Engineered Tracheal Replacement. Otolaryngology - Head and Neck Surgery, 2019, 161, 458-467.	1.9	20
10	Clinical validation and reproducibility of endoscopic airway measurement in pediatric aerodigestive evaluation. International Journal of Pediatric Otorhinolaryngology, 2019, 116, 65-69.	1.0	4
11	Oversized Biodegradable Arterial Grafts Promote Enhanced Neointimal Tissue Formation. Tissue Engineering - Part A, 2018, 24, 1251-1261.	3.1	12
12	Toward a patient-specific tissue engineered vascular graft. Journal of Tissue Engineering, 2018, 9, 204173141876470.	5.5	32
13	Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts. Tissue Engineering - Part A, 2018, 24, 135-144.	3.1	36
14	Designing a tissue-engineered tracheal scaffold for preclinical evaluation. International Journal of Pediatric Otorhinolaryngology, 2018, 104, 155-160.	1.0	36
15	Quantification of tissueâ€engineered trachea performance with computational fluid dynamics. Laryngoscope, 2018, 128, E273-E280.	2.0	6
16	Magnetic Resonance Imaging of Shear Stress and Wall Thickness in Tissue-Engineered Vascular Grafts. Tissue Engineering - Part C: Methods, 2018, 24, 465-473.	2.1	7
17	Intravascular Ultrasound Characterization of a Tissue-Engineered Vascular Graft in an Ovine Model. Journal of Cardiovascular Translational Research, 2017, 10, 128-138.	2.4	13
18	The role of myeloid cell-derived PDGF-B in neotissue formation in a tissue-engineered vascular graft. Regenerative Medicine, 2017, 12, 249-261.	1.7	16

CAMERON A BEST

#	Article	IF	CITATIONS
19	Endoscopic management of tissue-engineered tracheal graft stenosis in an ovine model. Laryngoscope, 2017, 127, 2219-2224.	2.0	11
20	Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 924-932.	0.8	86
21	Deconstructing the Tissue Engineered Vascular Graft: Evaluating Scaffold Pre-Wetting, Conditioned Media Incubation, and Determining the Optimal Mononuclear Cell Source. ACS Biomaterials Science and Engineering, 2017, 3, 1972-1979.	5.2	22
22	Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time. Regenerative Medicine, 2016, 11, 159-167.	1.7	29
23	TGFâ€Î² receptor 1 inhibition prevents stenosis of tissueâ€engineered vascular grafts by reducing host mononuclear phagocyte activation. FASEB Journal, 2016, 30, 2627-2636.	0.5	26
24	Clinical Translation of Tissue Engineered Trachea Grafts. Annals of Otology, Rhinology and Laryngology, 2016, 125, 873-885.	1.1	69
25	Objective characterization of airway dimensions using image processing. International Journal of Pediatric Otorhinolaryngology, 2016, 91, 108-112.	1.0	8
26	Novel Association of miR-451 with the Incidence of TEVG Stenosis in a Murine Model. Tissue Engineering - Part A, 2016, 22, 75-82.	3.1	6
27	Effect of cell seeding on neotissue formation in a tissue engineered trachea. Journal of Pediatric Surgery, 2016, 51, 49-55.	1.6	24
28	Long-Term Functional Efficacy of a Novel Electrospun Poly(Glycerol Sebacate)-Based Arterial Graft in Mice. Annals of Biomedical Engineering, 2016, 44, 2402-2416.	2.5	71
29	Cardiovascular Tissue Engineering: Preclinical Validation to Bedside Application. Physiology, 2016, 31, 7-15.	3.1	22
30	Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. PLoS ONE, 2016, 11, e0158555.	2.5	156
31	Biomechanical Diversity Despite Mechanobiological Stability in Tissue Engineered Vascular Grafts Two Years Post-Implantation. Tissue Engineering - Part A, 2015, 21, 1529-1538.	3.1	47
32	Hemodynamic Characterization of a Mouse Model for Investigating the Cellular and Molecular Mechanisms of Neotissue Formation in Tissue-Engineered Heart Valves. Tissue Engineering - Part C: Methods, 2015, 21, 987-994.	2.1	15
33	The innate immune system contributes to tissueâ€engineered vascular graft performance. FASEB Journal, 2015, 29, 2431-2438.	0.5	58
34	A mouse model of endocardial fibroelastosis. Cardiovascular Pathology, 2015, 24, 388-394.	1.6	4
35	Cilostazol, Not Aspirin, Prevents Stenosis of Bioresorbable Vascular Grafts in a Venous Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2003-2010.	2.4	17
36	Well-organized neointima of large-pore poly(l-lactic acid) vascular graft coated with poly(l-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(l-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis, 2014, 237, 684-691.	0.8	75

#	Article	IF	CITATIONS
37	Regenerative implants for cardiovascular tissue engineering. Translational Research, 2014, 163, 321-341.	5.0	43
38	Vascular tissue engineering: the next generation. Trends in Molecular Medicine, 2012, 18, 394-404.	6.7	132