List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11612530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447, 1007-1011.	27.8	1,037
2	The Wnt/β-Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML. Science, 2010, 327, 1650-1653.	12.6	675
3	Genetic Interaction of PGE2 and Wnt Signaling Regulates Developmental Specification of Stem Cells and Regeneration. Cell, 2009, 136, 1136-1147.	28.9	628
4	Runx1 Expression Marks Long-Term Repopulating Hematopoietic Stem Cells in the Midgestation Mouse Embryo. Immunity, 2002, 16, 661-672.	14.3	523
5	Hematopoietic Stem Cell Development Is Dependent on Blood Flow. Cell, 2009, 137, 736-748.	28.9	393
6	Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood, 2013, 122, 3074-3081.	1.4	280
7	Prostaglandin E2 Enhances Human Cord Blood Stem Cell Xenotransplants and Shows Long-Term Safety in Preclinical Nonhuman Primate Transplant Models. Cell Stem Cell, 2011, 8, 445-458.	11.1	250
8	Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nature Chemical Biology, 2013, 9, 514-520.	8.0	230
9	Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes and Development, 2014, 28, 2597-2612.	5.9	214
10	APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. Developmental Biology, 2008, 320, 161-174.	2.0	173
11	PGE2-regulated wnt signaling and <i>N</i> -acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17315-17320.	7.1	133
12	Runx1 Is Expressed in Adult Mouse Hematopoietic Stem Cells and Differentiating Myeloid and Lymphoid Cells, But Not in Maturing Erythroid Cells. Stem Cells, 2004, 22, 158-168.	3.2	114
13	Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors. Nature Methods, 2007, 4, 551-553.	19.0	99
14	Developmental Vitamin D Availability Impacts Hematopoietic Stem Cell Production. Cell Reports, 2016, 17, 458-468.	6.4	97
15	Clucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction in vivo. Blood, 2013, 121, 2483-2493.	1.4	96
16	Reconstruction of complex single-cell trajectories using CellRouter. Nature Communications, 2018, 9, 892.	12.8	78
17	Regulation of embryonic haematopoietic multipotency by EZH1. Nature, 2018, 553, 506-510.	27.8	70
18	Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish. Journal of Experimental Medicine, 2016, 213, 979-992.	8.5	69

#	Article	IF	CITATIONS
19	Estrogen Activation of G-Protein–Coupled Estrogen Receptor 1 Regulates Phosphoinositide 3-Kinase and mTOR Signaling to Promote Liver Growth in Zebrafish and Proliferation of HumanÂHepatocytes. Gastroenterology, 2019, 156, 1788-1804.e13.	1.3	69
20	YAP Regulates Hematopoietic Stem Cell Formation in Response to the Biomechanical Forces of Blood Flow. Developmental Cell, 2020, 52, 446-460.e5.	7.0	65
21	Small molecule screening identifies targetable zebrafish pigmentation pathways. Pigment Cell and Melanoma Research, 2012, 25, 131-143.	3.3	60
22	The Central Nervous System Regulates Embryonic HSPC Production via Stress-Responsive Glucocorticoid Receptor Signaling. Cell Stem Cell, 2016, 19, 370-382.	11.1	57
23	Modeling human hematopoietic and cardiovascular diseases in zebrafish. Developmental Dynamics, 2003, 228, 568-583.	1.8	51
24	Distinct Roles for Matrix Metalloproteinases 2 and 9 in Embryonic Hematopoietic Stem Cell Emergence, Migration, and Niche Colonization. Stem Cell Reports, 2017, 8, 1226-1241.	4.8	50
25	Metabolic Regulation of Inflammasome Activity Controls Embryonic Hematopoietic Stem and Progenitor Cell Production. Developmental Cell, 2020, 55, 133-149.e6.	7.0	50
26	Cannabinoid receptor signaling regulates liver development and metabolism. Development (Cambridge), 2016, 143, 609-622.	2.5	47
27	Repairing quite swimmingly: advances in regenerative medicine using zebrafish. DMM Disease Models and Mechanisms, 2014, 7, 769-776.	2.4	45
28	S-Nitrosothiol Signaling Regulates Liver Development and Improves Outcome following Toxic Liver Injury. Cell Reports, 2014, 6, 56-69.	6.4	45
29	Prostaglandin E2: Making More of Your Marrow. Cell Cycle, 2007, 6, 3054-3057.	2.6	43
30	Prostaglandin E2 Regulates Liver versus Pancreas Cell-Fate Decisions and Endodermal Outgrowth. Developmental Cell, 2014, 28, 423-437.	7.0	43
31	Oceans of opportunity: Exploring vertebrate hematopoiesis in zebrafish. Experimental Hematology, 2014, 42, 684-696.	0.4	39
32	Evi1 regulates Notch activation to induce zebrafish hematopoietic stem cell emergence. EMBO Journal, 2016, 35, 2315-2331.	7.8	39
33	Estrogen Defines the Dorsal-Ventral Limit of VEGF Regulation to Specify the Location of the Hemogenic Endothelial Niche. Developmental Cell, 2014, 29, 437-453.	7.0	36
34	Rargb regulates organ laterality in a zebrafish model of right atrial isomerism. Developmental Biology, 2012, 372, 178-189.	2.0	32
35	Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development. Developmental Biology, 2016, 418, 108-123.	2.0	32
36	Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P-Selectin Activity. Stem Cells, 2015, 33, 2596-2612.	3.2	31

#	Article	IF	CITATIONS
37	Teleost growth factor independence (gfi) genes differentially regulate successive waves of hematopoiesis. Developmental Biology, 2013, 373, 431-441.	2.0	30
38	Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development. DMM Disease Models and Mechanisms, 2013, 6, 1271-8.	2.4	30
39	HIF11±-induced PDGFR1² signaling promotes developmental HSC production via IL-6 activation. Experimental Hematology, 2017, 46, 83-95.e6.	0.4	27
40	The developmental stage of the hematopoietic niche regulates lineage in <i>MLL-</i> rearranged leukemia. Journal of Experimental Medicine, 2019, 216, 527-538.	8.5	27
41	Netting Novel Regulators of Hematopoiesis and Hematologic Malignancies in Zebrafish. Current Topics in Developmental Biology, 2017, 124, 125-160.	2.2	20
42	A systems biology pipeline identifies regulatory networks for stem cell engineering. Nature Biotechnology, 2019, 37, 810-818.	17.5	18
43	Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation. Stem Cell Reports, 2015, 5, 471-479.	4.8	17
44	Endothelialâ€ŧoâ€hematopoietic transition: Notchâ€ing vessels into blood. Annals of the New York Academy of Sciences, 2016, 1370, 97-108.	3.8	14
45	Inflammatory signals in HSPC development and homeostasis: Too much ofÂaÂgood thing?. Experimental Hematology, 2016, 44, 908-912.	0.4	14
46	Developmental maturation of the hematopoietic system controlled by a Lin28b-let-7-Cbx2 axis. Cell Reports, 2022, 39, 110587.	6.4	12
47	Hematopoietic Stem Cell Development: Using the Zebrafish to Identify the Signaling Networks and Physical Forces Regulating Hematopoiesis. Methods in Cell Biology, 2011, 105, 117-136.	1.1	11
48	A tool compound targeting the core binding factor Runt domain to disrupt binding to CBFβ in leukemic cells. Leukemia and Lymphoma, 2018, 59, 2188-2200.	1.3	11
49	Sequential regulation of hemogenic fate and hematopoietic stem and progenitor cell formation from arterial endothelium by Ezh1/2. Stem Cell Reports, 2021, 16, 1718-1734.	4.8	11
50	CellComm infers cellular crosstalk that drives haematopoietic stem and progenitor cell development. Nature Cell Biology, 2022, 24, 579-589.	10.3	11
51	Endoderm Specification, Liver Development, and Regeneration. Methods in Cell Biology, 2011, 101, 205-223.	1.1	10
52	Making Blood from the Vessel: Extrinsic and Environmental Cues Guiding the Endothelial-to-Hematopoietic Transition. Life, 2021, 11, 1027.	2.4	9
53	Transcriptome Dynamics of Hematopoietic Stem Cell Formation Revealed Using a Combinatorial Runx1 and Ly6a Reporter System. Stem Cell Reports, 2020, 14, 956-971.	4.8	8
54	Estrogen Acts Through Estrogen Receptor 2b to Regulate Hepatobiliary Fate During Vertebrate Development. Hepatology, 2020, 72, 1786-1799.	7.3	6

#	Article	IF	CITATIONS
55	NOTCHing an Arrow at Cord Blood: Translating Stem Cell Knowledge into Clinical Practice. Cell Stem Cell, 2010, 6, 186-187.	11.1	5
56	Lin28 paralogs regulate lung branching morphogenesis. Cell Reports, 2021, 36, 109408.	6.4	5
57	Hypoxic, glycolytic metabolism is a vulnerability of B-acute lymphoblastic leukemia-initiating cells. Cell Reports, 2022, 39, 110752.	6.4	5
58	Enumerating Hematopoietic Stem and Progenitor Cells in Zebrafish Embryos. Methods in Molecular Biology, 2016, 1451, 191-206.	0.9	4
59	Ddx41 loss R-loops in cGAS to fuel inflammatory HSPC production. Developmental Cell, 2021, 56, 571-572.	7.0	4
60	Haematopoietic stem cells show their true colours. Nature Cell Biology, 2017, 19, 10-12.	10.3	3
61	EnaBILEing Growth in the Fetal Liver. Cell Stem Cell, 2016, 18, 427-428.	11.1	1
62	Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish. Journal of Cell Biology, 2016, 213, 2133OIA95.	5.2	1
63	An induced pluripotent stem cell model of Fanconi anemia reveals mechanisms of p53-driven progenitor cell differentiation. Blood Advances, 2020, 4, 4679-4692.	5.2	1
64	Mechanisms of Leukemia Stem Cell Plasticity Revealed By Single Cell Analysis. Blood, 2020, 136, 32-32.	1.4	1
65	Repairing quite swimmingly: advances in regenerative medicine using zebrafish. Development (Cambridge), 2014, 141, e1406-e1406.	2.5	0
66	Multiple Roles for the Zebrafish Homologue of the Murine Evi1 Gene during Primitive Myelopoiesis and HSC Development. Blood, 2014, 124, 2901-2901.	1.4	0
67	Inflammatory Signaling Regulates Embryonic Hematopoietic Stem and Lymphoid Progenitor Cell Formation. Blood, 2014, 124, 2902-2902.	1.4	0
68	Modeling Fanconi Anemia Using Human Induced Pluripotent Stem Cells By Reversible Complementation. Blood, 2018, 132, 3856-3856.	1.4	0
69	An Essential Role for the RNA Editor-Exonuclease Axis in Terminal Erythroid Differentiation. Blood, 2020, 136, 3-3.	1.4	0
70	Extrinsic Factors Governing Hematopoietic Stem Cell Development. Blood, 2020, 136, SCI1-SCI1.	1.4	0