Alessandro Franchin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of coarse aerosol particles as a sink of HNO ₃ in wintertime pollution events in the Salt Lake Valley. Atmospheric Chemistry and Physics, 2021, 21, 8111-8126.	4.9	9
2	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. Environmental Science & Technology, 2021, 55, 10280-10290.	10.0	31
3	On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah. Atmospheric Chemistry and Physics, 2019, 19, 9287-9308.	4.9	33
4	An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NO _x and VOC Control as Mitigation Strategies. Geophysical Research Letters, 2019, 46, 4971-4979.	4.0	80
5	Wintertime spatial distribution of ammonia and its emission sources in the Great Salt Lake region. Atmospheric Chemistry and Physics, 2019, 19, 15691-15709.	4.9	15
6	Airborne and ground-based observations of ammonium-nitrate-dominated aerosols in a shallow boundary layer during intense winter pollution episodes in northern Utah. Atmospheric Chemistry and Physics, 2018, 18, 17259-17276.	4.9	33
7	Production of neutral molecular clusters by controlled neutralization of mobility standards. Aerosol Science and Technology, 2017, 51, 946-955.	3.1	5
8	Evaporation of sulfate aerosols at low relative humidity. Atmospheric Chemistry and Physics, 2017, 17, 8923-8938.	4.9	11
9	Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1752-1775.	3.3	99
10	Comparison of the SAWNUC model with CLOUD measurements of sulphuric acidâ€water nucleation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12401-12414.	3.3	16
11	Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3036-3049.	3.3	17
12	Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,377.	3.3	71
13	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	27.8	540
14	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	27.8	528
15	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	7.1	107
16	Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature, 2016, 537, 532-534.	27.8	237
17	Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber. Aerosol Science and Technology, 2016, 50, 1017-1032.	3.1	13
18	Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.	12.6	289

Alessandro Franchin

#	Article	IF	CITATIONS
19	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	12.8	116
20	Heterogeneous Nucleation onto Ions and Neutralized Ions: Insights into Sign-Preference. Journal of Physical Chemistry C, 2016, 120, 7444-7450.	3.1	45
21	Experimental investigation of ion–ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 2015, 15, 7203-7216.	4.9	46
22	Thermodynamics of the formation of sulfuric acid dimers in the binary (H ₂ SO ₄ –H <su and ternary (H₂SO₄–H<sub system_Atmospheric Chemistry and Physics_2015_15_10701-10721</sub </su 	b>: 4.9 b>:	227 2
23	Technical Note: Using DEG-CPCs at upper tropospheric temperatures. Atmospheric Chemistry and Physics, 2015, 15, 7547-7555.	4.9	11
24	On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmospheric Chemistry and Physics, 2015, 15, 55-78.	4.9	84
25	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.	10.0	51
26	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	12.6	456
27	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	7.1	208
28	Comparing simulated and experimental molecular cluster distributions. Faraday Discussions, 2013, 165, 75.	3.2	33
29	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	27.8	774
30	Direct Observations of Atmospheric Aerosol Nucleation. Science, 2013, 339, 943-946.	12.6	876
31	Modelling new particle formation from JuÌ^lich plant atmosphere chamber and CERN CLOUD chamber measurements. , 2013, , .		0
32	The particle size magnifier closing the gap between measurement of molecules, molecular clusters and aerosol particles. , 2013, , .		0
33	Performance of diethylene glycol-based particle counters in the sub-3 nm size range. Atmospheric Measurement Techniques, 2013, 6, 1793-1804.	3.1	63
34	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	7.1	300
35	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	27.8	1,114
36	An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small lons. Aerosol Science and Technology, 2011, 45, 522-532.	3.1	72