Christopher M Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11612324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms underlying the role of the centriolar CEP164-TTBK2 complex in ciliopathies. Structure, 2022, 30, 114-128.e9.	3.3	11
2	Target-induced clustering activates Trim-Away of pathogens and proteins. Nature Structural and Molecular Biology, 2021, 28, 278-289.	8.2	44
3	Signalling lymphocyte activation molecule family member 9 is found on select subsets of antigenâ€presenting cells and promotes resistance to <i>Salmonella</i> infection. Immunology, 2020, 159, 393-403.	4.4	7
4	CCDC61/VFL3 Is a Paralog of SAS6 and Promotes Ciliary Functions. Structure, 2020, 28, 674-689.e11.	3.3	16
5	Effect of structural stability on endolysosomal degradation and Tâ€cell reactivity of major shrimp allergen tropomyosin. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2909-2919.	5.7	25
6	Membrane characteristics tune activities of endosomal and autophagic human VPS34 complexes. ELife, 2020, 9, .	6.0	34
7	Structural insights into the critical DNA damage sensors DNA-PKcs, ATM and ATR. Progress in Biophysics and Molecular Biology, 2019, 147, 4-16.	2.9	23
8	Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk. Nature Communications, 2019, 10, 4378.	12.8	23
9	Direct binding of CEP85 to STIL ensures robust PLK4 activation and efficient centriole assembly. Nature Communications, 2018, 9, 1731.	12.8	32
10	RNA-directed activation of cytoplasmic dynein-1 in reconstituted transport RNPs. ELife, 2018, 7, .	6.0	72
11	Intracellular antibody signalling is regulated by phosphorylation of the Fc receptor TRIM21. ELife, 2018, 7, .	6.0	57
12	Protein Folding, Energy Landscapes and Downhill Protein Folding Scenarios. , 2018, , 1-19.		2
13	The Ciliopathy-Associated Cep104 Protein Interacts with Tubulin and Nek1 Kinase. Structure, 2017, 25, 146-156.	3.3	36
14	Structures of closed and open conformations of dimeric human ATM. Science Advances, 2017, 3, e1700933.	10.3	91
15	Conservation of folding and association within a family of spidroin N-terminal domains. Scientific Reports, 2017, 7, 16789.	3.3	10
16	Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating. Scientific Reports, 2017, 7, 16321.	3.3	39
17	Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Nature Communications, 2016, 7, 11016.	12.8	76
18	Wnt Signalosome Assembly by DEP Domain Swapping of Dishevelled. Molecular Cell, 2016, 64, 92-104.	9.7	125

#	Article	IF	CITATIONS
19	Characterization of Atg38 and NRBF2, a fifth subunit of the autophagic Vps34/PIK3C3 complex. Autophagy, 2016, 12, 2129-2144.	9.1	52
20	Fold stability during endolysosomal acidification is a key factor for allergenicity and immunogenicity of the major birch pollen allergen. Journal of Allergy and Clinical Immunology, 2016, 137, 1525-1534.	2.9	69
21	An ancient Pygo-dependent Wnt enhanceosome integrated by Chip/LDB-SSDP. ELife, 2015, 4, .	6.0	49
22	CTNNBL1 facilitates the association of CWC15 with CDC5L and is required to maintain the abundance of the Prp19 spliceosomal complex. Nucleic Acids Research, 2015, 43, 7058-7069.	14.5	19
23	Ubiquitination of the Dishevelled DIX domain blocks its head-to-tail polymerization. Nature Communications, 2015, 6, 6718.	12.8	50
24	Microsecond Folding and Domain Motions of a Spider Silk Protein Structural Switch. Journal of the American Chemical Society, 2014, 136, 17136-17144.	13.7	39
25	Structural and mutational analysis reveals that CTNNBL1 binds NLSs in a manner distinct from that of its closest armadilloâ€relative, karyopherin α. FEBS Letters, 2014, 588, 21-27.	2.8	5
26	Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 2241-2250.	2.3	76
27	Structure of the SAS-6 cartwheel hub from Leishmania major. ELife, 2014, 3, e01812.	6.0	54
28	Bacterial actin MreB forms antiparallel double filaments. ELife, 2014, 3, e02634.	6.0	153
29	The hepatitis B virus preS1 domain hijacks host trafficking proteins by motif mimicry. Nature Chemical Biology, 2013, 9, 540-547.	8.0	29
30	The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening. Nature Communications, 2013, 4, 2815.	12.8	65
31	Don't waste good methods on bad buffers and ambiguous data. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E331-E332.	7.1	6
32	Differential scanning calorimetry as a tool for protein folding and stability. Archives of Biochemistry and Biophysics, 2013, 531, 100-109.	3.0	289
33	Bicaudal-D uses a parallel, homodimeric coiled coil with heterotypic registry to coordinate recruitment of cargos to dynein. Genes and Development, 2013, 27, 1233-1246.	5.9	79
34	Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly. ELife, 2013, 2, e01071.	6.0	90
35	Backbone-Driven Collapse in Unfolded Protein Chains. Journal of Molecular Biology, 2011, 409, 250-262.	4.2	95
36	Intrinsic Motions in the N-Terminal Domain of an Ionotropic Glutamate Receptor Detected by Fluorescence Correlation Spectroscopy. Journal of Molecular Biology, 2011, 414, 96-105.	4.2	17

#	Article	IF	CITATIONS
37	Folding of the Pit1 homeodomain near the speed limit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 569-573.	7.1	53
38	Structures of SAS-6 Suggest Its Organization in Centrioles. Science, 2011, 331, 1196-1199.	12.6	284
39	The human peripheral subunitâ€binding domain folds rapidly while overcoming repulsive Coulomb forces. Protein Science, 2010, 19, 1704-1713.	7.6	3
40	Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO Journal, 2010, 29, 1081-1090.	7.8	144
41	Engineering a two-helix bundle protein for folding studies. Protein Engineering, Design and Selection, 2010, 23, 357-364.	2.1	7
42	Allosteric Remodelling of the Histone H3 Binding Pocket in the Pygo2 PHD Finger Triggered by Its Binding to the B9L/BCL9 Co-Factor. Journal of Molecular Biology, 2010, 401, 969-984.	4.2	43
43	Direct observation of ultrafast folding and denatured state dynamics in single protein molecules. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18569-18574.	7.1	109
44	Downhill versus Barrier-Limited Folding of BBL 2: Mechanistic Insights from Kinetics of Folding Monitored by Independent Tryptophan Probes. Journal of Molecular Biology, 2009, 387, 975-985.	4.2	28
45	The Folding Mechanism of BBL: Plasticity of Transition-State Structure Observed within an Ultrafast Folding Protein Family. Journal of Molecular Biology, 2009, 390, 1060-1073.	4.2	31
46	Conservation of Transition State Structure in Fast Folding Peripheral Subunit-Binding Domains. Journal of Molecular Biology, 2008, 383, 224-237.	4.2	20
47	Moving towards High-Resolution Descriptions of the Molecular Interactions and Structural Rearrangements of the Human Hepatitis B Core Protein. Journal of Molecular Biology, 2008, 384, 1301-1313.	4.2	27
48	Demonstration by burst-phase analysis of a robust folding intermediate in the FF domain. Protein Engineering, Design and Selection, 2008, 21, 207-214.	2.1	9
49	The helix turn helix motif as an ultrafast independently folding domain: The pathway of folding of Engrailed homeodomain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9272-9277.	7.1	71
50	Analysis of 'downhill' protein folding. Nature, 2007, 445, E14-E15.	27.8	44
51	The Transition State for Folding of a Peripheral Subunit-binding Domain Contains Robust and Ionic-strength Dependent Characteristics. Journal of Molecular Biology, 2006, 356, 1237-1247.	4.2	24
52	Effects of Heme on the Structure of the Denatured State and Folding Kinetics of Cytochrome b562. Journal of Molecular Biology, 2005, 346, 331-344.	4.2	33
53	Simulation and Experiment at High Temperatures: Ultrafast Folding of a Thermophilic Protein by Nucleation-condensation. Journal of Molecular Biology, 2005, 347, 855-870.	4.2	49
54	Ultra-fast Barrier-limited Folding in the Peripheral Subunit-binding Domain Family. Journal of Molecular Biology, 2005, 353, 427-446.	4.2	99

#	Article	IF	CITATIONS
55	Demonstration of a low-energy on-pathway intermediate in a fast-folding protein by kinetics, protein engineering, and simulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6450-6455.	7.1	98
56	The complete folding pathway of a protein from nanoseconds to microseconds. Nature, 2003, 421, 863-867.	27.8	449
57	Loss of a metal-binding site in gelsolin leads to familial amyloidosis–Finnish type. Nature Structural Biology, 2002, 9, 112-116.	9.7	67
58	Heat does not come in different colours: entropy–enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions. Biophysical Chemistry, 2001, 93, 215-230.	2.8	308
59	Structural Consequences ofb- toc-type Heme Conversion in OxidizedEscherichia coliCytochromeb562â€,â€j. Biochemistry, 2000, 39, 1499-1514.	2.5	46
60	Design of highly stable functional GroEL minichaperones. Protein Science, 1999, 8, 2186-2193.	7.6	73
61	Folding intermediates of wild-type and mutants of barnase. II. correlation of changes in equilibrium amide exchange kinetics with the population of the folding intermediate. Journal of Molecular Biology, 1998, 276, 647-656.	4.2	33
62	Thermodynamics of the interaction of barnase and barstar: changes in free energy versus changes in enthalpy on mutation 1 1Edited by J. Karn. Journal of Molecular Biology, 1997, 267, 696-706.	4.2	125
63	Thermodynamics of denaturation of mutants of barnase with disulfide crosslinks. Journal of Molecular Biology, 1997, 268, 198-208.	4.2	34
64	Folding and stability of a fibronectin type III domain of human tenascin. Journal of Molecular Biology, 1997, 270, 771-778.	4.2	111
65	Protein Stability as a Function of Denaturant Concentration: The Thermal Stability of Barnase in the Presence of Urea. Biochemistry, 1995, 34, 6795-6804.	2.5	151
66	Extrapolation to water of kinetic and equilibrium data for the unfolding of barnase in urea solutions. Protein Engineering, Design and Selection, 1994, 7, 1089-1095.	2.1	71
67	The A-State of Barnase. Biochemistry, 1994, 33, 11189-11199.	2.5	32
68	Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry, 1993, 32, 11259-11269.	2.5	294
69	A comparison of the reactivity and stability of wild type and His388 Gln mutant phosphoglycerate kinase from yeast. FEBS Journal, 1991, 202, 1157-1164.	0.2	13