Ming-Bo Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science, 2014, 39, 627-655.	24.7	553
2	Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. Journal of Materials Chemistry, 2012, 22, 18772.	6.7	516
3	Review on auxetic materials. Journal of Materials Science, 2004, 39, 3269-3279.	3.7	448
4	Hybrid graphene aerogels/phase change material composites: Thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon, 2016, 100, 693-702.	10.3	351
5	Smart Ti ₃ C ₂ T _{<i>x</i>} MXene Fabric with Fast Humidity Response and Joule Heating for Healthcare and Medical Therapy Applications. ACS Nano, 2020, 14, 8793-8805.	14.6	288
6	Stereocomplex Crystallite Network in Asymmetric PLLA/PDLA Blends: Formation, Structure, and Confining Effect on the Crystallization Rate of Homocrystallites. Macromolecules, 2014, 47, 1439-1448.	4.8	267
7	Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chemical Engineering Journal, 2017, 315, 481-490.	12.7	264
8	Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Solar Energy Materials and Solar Cells, 2018, 174, 56-64.	6.2	223
9	An ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light–thermal–electric energy conversion. Journal of Materials Chemistry A, 2016, 4, 18841-18851.	10.3	216
10	Flexible Anti-Biofouling MXene/Cellulose Fibrous Membrane for Sustainable Solar-Driven Water Purification. ACS Applied Materials & Interfaces, 2019, 11, 36589-36597.	8.0	216
11	Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Materials, 2018, 13, 88-95.	18.0	210
12	Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. Journal of Materials Chemistry A, 2019, 7, 10446-10455.	10.3	208
13	Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Research, 2017, 10, 802-813.	10.4	206
14	Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydrate Polymers, 2017, 155, 507-515.	10.2	205
15	Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon, 2015, 88, 196-205.	10.3	189
16	High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials. Materials Horizons, 2019, 6, 250-273.	12.2	187
17	Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. Journal of Materials Chemistry A, 2019, 7, 15913-15923.	10.3	184
18	Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide. Solar Energy Materials and Solar Cells, 2014, 123, 171-177.	6.2	178

#	Article	IF	CITATIONS
19	Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Research, 2020, 13, 255-264.	10.4	174
20	Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Composites Science and Technology, 2021, 202, 108600.	7.8	165
21	Novel photodriven composite phase change materials with bioinspired modification of BN for solar-thermal energy conversion and storage. Journal of Materials Chemistry A, 2016, 4, 9625-9634.	10.3	163
22	All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels. Materials Horizons, 2020, 7, 855-865.	12.2	153
23	Flame retardancy of different-sized expandable graphite particles for high-density rigid polyurethane foams. Polymer International, 2006, 55, 862-871.	3.1	137
24	Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion. Nanoscale, 2017, 9, 17704-17709.	5.6	131
25	Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant. Nano Energy, 2019, 62, 620-627.	16.0	122
26	Transcrystalline Morphology of an in situ Microfibrillar Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 467 T Process. Macromolecular Rapid Communications, 2004, 25, 553-558.	d (tereph 3.9	thalate)/Poly 121
27	Conductive thermoplastic vulcanizates (TPVs) based on polypropylene (PP)/ethylene-propylene-diene rubber (EPDM) blend: From strain sensor to highly stretchable conductor. Composites Science and Technology, 2016, 128, 176-184.	7.8	120
28	Multifunctional Thermal Management Materials with Excellent Heat Dissipation and Generation Capability for Future Electronics. ACS Applied Materials & Interfaces, 2019, 11, 18739-18745.	8.0	116
29	A bridge-arched and layer-structured hollow melamine foam/reduced graphene oxide composite with an enlarged evaporation area and superior thermal insulation for high-performance solar steam generation. Journal of Materials Chemistry A, 2020, 8, 2701-2711.	10.3	103
30	Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide. Energy Conversion and Management, 2017, 146, 253-264.	9.2	99
31	Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Composites Science and Technology, 2018, 167, 456-462.	7.8	97
32	Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid. RSC Advances, 2015, 5, 18367-18374.	3.6	94
33	A new approach to construct segregated structures in thermoplastic polyolefin elastomers towards improved conductive and mechanical properties. Journal of Materials Chemistry A, 2015, 3, 5482-5490.	10.3	91
34	Recent advances in polymer-based thermal interface materials for thermal management: A mini-review. Composites Communications, 2020, 22, 100528.	6.3	91
35	Photodriven Shape-Stabilized Phase Change Materials with Optimized Thermal Conductivity by Tailoring the Microstructure of Hierarchically Ordered Hybrid Porous Scaffolds. ACS Sustainable Chemistry and Engineering, 2018, 6, 6761-6770.	6.7	88
36	Bacterial cellulose/MXene hybrid aerogels for photodriven shape-stabilized composite phase change materials. Solar Energy Materials and Solar Cells, 2019, 203, 110174.	6.2	85

#	Article	IF	CITATIONS
37	2D end-to-end carbon nanotube conductive networks in polymer nanocomposites: a conceptual design to dramatically enhance the sensitivities of strain sensors. Nanoscale, 2018, 10, 2191-2198.	5.6	83
38	Expandable Graphite For Halogen-Free Flame-Retardant of High-Density Rigid Polyurethane Foams. Polymer-Plastics Technology and Engineering, 2005, 44, 1323-1337.	1.9	82
39	Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Advanced Composites and Hybrid Materials, 2018, 1, 160-167.	21.1	81
40	Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA. Journal of Materials Science, 2018, 53, 10543-10553.	3.7	79
41	Human Skin-Inspired Electronic Sensor Skin with Electromagnetic Interference Shielding for the Sensation and Protection of Wearable Electronics. ACS Applied Materials & Interfaces, 2018, 10, 40880-40889.	8.0	78
42	Highly sensitive and multifunctional piezoresistive sensor based on polyaniline foam for wearable Human-Activity monitoring. Composites Part A: Applied Science and Manufacturing, 2019, 121, 510-516.	7.6	78
43	A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy, 2020, 74, 104814.	16.0	77
44	Recent Advances in Multiresponsive Flexible Sensors towards Eâ€ s kin: A Delicate Design for Versatile Sensing. Small, 2022, 18, e2103734.	10.0	76
45	A facile fabrication of shape memory polymer nanocomposites with fast light-response and self-healing performance. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105931.	7.6	75
46	Boosting electrical and piezoresistive properties of polymer nanocomposites via hybrid carbon fillers: A review. Carbon, 2021, 173, 1020-1040.	10.3	71
47	Morphology and nonisothermal crystallization ofin situ microfibrillar poly(ethylene) Tj ETQq1 1 0.784314 rgBT /C of Polymer Science, Part B: Polymer Physics, 2004, 42, 374-385.	Overlock 10 2.1	0 Tf 50 347 T 70
48	Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. Journal of Materials Chemistry A, 2014, 2, 3190-3199.	10.3	70
49	Flexible TPU strain sensors with tunable sensitivity and stretchability by coupling AgNWs with rGO. Journal of Materials Chemistry C, 2020, 8, 4040-4048.	5.5	70
50	Hierarchical crystalline structure of HDPE molded by gas-assisted injection molding. Polymer, 2007, 48, 5486-5492.	3.8	67
51	Surperhydrophobic polyurethane foam modified by graphene oxide. Journal of Applied Polymer Science, 2013, 130, 3530-3536.	2.6	67
52	Enhancing Thermomechanical Properties and Heat Distortion Resistance of Poly(<scp>l</scp> -lactide) with High Crystallinity under High Cooling Rate. ACS Sustainable Chemistry and Engineering, 2015, 3, 654-661.	6.7	67
53	Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure. Composites Part B: Engineering, 2016, 99, 348-357.	12.0	67
54	Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotoxicology and Environmental Safety, 2018, 165, 299-306.	6.0	66

#	Article	IF	CITATIONS
55	Electro and Light-Active Actuators Based on Reversible Shape-Memory Polymer Composites with Segregated Conductive Networks. ACS Applied Materials & Interfaces, 2019, 11, 30332-30340.	8.0	66
56	In-situ microfibrillar PET/iPP blend via slit die extrusion, hot stretching, and quenching: Influence of hot stretch ratio on morphology, crystallization, and crystal structure of iPP at a fixed PET concentration. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 4095-4106.	2.1	64
57	Facile fabrication of shape-stabilized polyethylene glycol/cellulose nanocrystal phase change materials based on thiol-ene click chemistry and solvent exchange. Chemical Engineering Journal, 2020, 396, 125206.	12.7	64
58	Design of compressible and elastic N-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. Journal of Materials Chemistry A, 2020, 8, 17257-17265.	10.3	61
59	Selective distribution and migration of carbon nanotubes enhanced electrical and mechanical performances in polyolefin elastomers. Polymer, 2017, 110, 1-11.	3.8	59
60	Nanofibrillar Poly(vinyl alcohol) Ionic Organohydrogels for Smart Contact Lens and Human-Interactive Sensing. ACS Applied Materials & Interfaces, 2020, 12, 23514-23522.	8.0	59
61	Light- and magnetic-responsive synergy controlled reconfiguration of polymer nanocomposites with shape memory assisted self-healing performance for soft robotics. Journal of Materials Chemistry C, 2021, 9, 5515-5527.	5.5	57
62	A Facile Route to Fabricate Highly Anisotropic Thermally Conductive Elastomeric POE/NG Composites for Thermal Management. Advanced Materials Interfaces, 2018, 5, 1700946.	3.7	56
63	The enhanced nucleating ability of carbon nanotube-supported \hat{l}^2 -nucleating agent in isotactic polypropylene. Colloid and Polymer Science, 2010, 288, 681-688.	2.1	54
64	Redoxâ€Mediated Artificial Nonâ€Enzymatic Antioxidant MXene Nanoplatforms for Acute Kidney Injury Alleviation. Advanced Science, 2021, 8, e2101498.	11.2	54
65	Deformation-induced structure evolution of oriented β-polypropylene during uniaxial stretching. Polymer, 2013, 54, 1259-1268.	3.8	50
66	Tuning the structure of graphene oxide and the properties of poly(vinyl alcohol)/graphene oxide nanocomposites by ultrasonication. Journal of Materials Chemistry A, 2013, 1, 3163.	10.3	49
67	Hierarchically Porous PVA Aerogel for Leakage-Proof Phase Change Materials with Superior Energy Storage Capacity. Energy & Fuels, 2020, 34, 2471-2479.	5.1	49
68	Cylindritic structures of high-density polyethylene molded by multi-melt multi-injection molding. Polymer, 2011, 52, 3871-3878.	3.8	48
69	Surface structure engineering for a bionic fiber-based sensor toward linear, tunable, and multifunctional sensing. Materials Horizons, 2020, 7, 2450-2459.	12.2	47
70	High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching. Materials Science and Engineering C, 2018, 90, 602-609.	7.3	46
71	Interfacial Radiation-Absorbing Hydrogel Film for Efficient Thermal Utilization on Solar Evaporator Surfaces. Nano Letters, 2021, 21, 10516-10524.	9.1	46
72	Morphology-tensile behavior relationship in injection molded poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	50 67 Td (te 3.7	erephthalate) 45

Journal of Materials Science, 2004, 39, 413-431.

#	Article	IF	CITATIONS
73	Dopamine-induced functionalization of cellulose nanocrystals with polyethylene glycol towards poly(L-lactic acid) bionanocomposites for green packaging. Carbohydrate Polymers, 2019, 203, 275-284.	10.2	45
74	Morphology and Tensile Strength Prediction of in situ Microfibrillar Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Macromolecular Materials and Engineering, 2004, 289, 349-354.	0 Tf 50 707 3.6	7 Td (terepht 44
75	Morphology and Rheological Behaviors of Polycarbonate/High Density Polyethylene in situ Microfibrillar Blends. Macromolecular Materials and Engineering, 2004, 289, 1087-1095.	3.6	42
76	Electrical properties and morphology of carbon black filled PP/EPDM blends: effect of selective distribution of fillers induced by dynamic vulcanization. Journal of Materials Science, 2013, 48, 4942-4951.	3.7	42
77	A high-performance temperature sensitive TPV/CB elastomeric composite with balanced electrical and mechanical properties via PF-induced dynamic vulcanization. Journal of Materials Chemistry A, 2014, 2, 16989-16996.	10.3	42
78	Suppression of phase coarsening in immiscible, co-continuous polymer blends under high temperature quiescent annealing. Soft Matter, 2014, 10, 3587.	2.7	42
79	Exploring Nextâ€Generation Functional Organic Phase Change Composites. Advanced Functional Materials, 2022, 32, .	14.9	42
80	Low-entropy structured wearable film sensor with piezoresistive-piezoelectric hybrid effect for 3D mechanical signal screening. Nano Energy, 2021, 90, 106603.	16.0	41
81	Crystallization behavior of poly (vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. Journal of Materials Science, 2011, 46, 1542-1550.	3.7	40
82	Greatly accelerated crystallization of poly(lactic acid): cooperative effect of stereocomplex crystallites and polyethylene glycol. Colloid and Polymer Science, 2014, 292, 163-172.	2.1	40
83	Flexible and Tough Cellulose Nanocrystal/Polycaprolactone Hybrid Aerogel Based on the Strategy of Macromolecule Cross-Linking via Click Chemistry. ACS Sustainable Chemistry and Engineering, 2019, 7, 15617-15627.	6.7	40
84	Thermal properties and flame retardancy of polycarbonate/hydroxyapatite nanocomposite. Journal of Applied Polymer Science, 2008, 109, 659-663.	2.6	39
85	High-melting-point crystals of poly(<scp>l</scp> -lactic acid) (PLLA): the most efficient nucleating agent to enhance the crystallization of PLLA. CrystEngComm, 2015, 17, 2310-2320.	2.6	39
86	Phase change mediated mechanically transformative dynamic gel for intelligent control of versatile devices. Materials Horizons, 2021, 8, 1230-1241.	12.2	39
87	An extremely uniform dispersion of MWCNTs in olefin block copolymers significantly enhances electrical and mechanical performances. Polymer Chemistry, 2015, 6, 7160-7170.	3.9	38
88	Melt viscoelasticity, electrical conductivity, and crystallization of PVDF/MWCNT composites: Effect of the dispersion of MWCNTs. Journal of Applied Polymer Science, 2012, 125, E49.	2.6	37
89	Templateâ€Free Selfâ€Caging Nanochemistry for Largeâ€Scale Synthesis of Sulfonatedâ€Graphene@Sulfur Nanocage for Longâ€Life Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2008652.	14.9	37
90	Anomalous attenuation of the positive temperature coefficient of resistivity in a carbon-black-filled polymer composite with electrically conductive in situ microfibrils. Applied Physics Letters, 2006, 89, 032105.	3.3	36

#	Article	IF	CITATIONS
91	Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. Journal of Materials Science, 2012, 47, 5097-5105.	3.7	36
92	Tailoring Crystalline Morphology by High-Efficiency Nucleating Fiber: Toward High-Performance Poly(<scp>l</scp> -lactide) Biocomposites. ACS Applied Materials & Interfaces, 2018, 10, 20044-20054.	8.0	36
93	Scalable Flexible Phase Change Materials with a Swollen Polymer Network Structure for Thermal Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 59364-59372.	8.0	36
94	Essential Work of Fracture Parameters of in-situ Microfibrillar Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 Engineering, 2004, 289, 426-433.	0 627 Td 3.6	(terephthalat 35
95	Effect of Melt and Mold Temperatures on the Solidification Behavior of HDPE during Gasâ€Assisted Injection Molding: An Enthalpy Transformation Approach. Macromolecular Materials and Engineering, 2009, 294, 336-344.	3.6	35
96	Preparation of cellulose-graft-polylactic acid via melt copolycondensation for use in polylactic acid based composites: synthesis, characterization and properties. RSC Advances, 2016, 6, 1973-1983.	3.6	35
97	Rheological behavior comparison between PET/HDPE and PC/HDPE microfibrillar blends. Polymer Engineering and Science, 2005, 45, 1231-1238.	3.1	34
98	A rheological study on temperature dependent microstructural changes of fumed silica gels in dodecane. Soft Matter, 2012, 8, 10457.	2.7	34
99	Control of morphology and properties by the selective distribution of nano-silica particles with different surface characteristics in PA6/ABS blends. Journal of Materials Science, 2012, 47, 4620-4631.	3.7	34
100	Toughening of PA6/EPDM-g-MAH/HDPE ternary blends via controlling EPDM-g-MAH grafting degree: the role of core–shell particle size and shell thickness. Polymer Bulletin, 2015, 72, 177-193.	3.3	34
101	Flexible phase change hydrogels for mid-/low-temperature infrared stealth. Chemical Engineering Journal, 2022, 446, 137463.	12.7	34
102	Simulation of phaseâ€change heat transfer during cooling stage of gasâ€assisted injection molding of highâ€density polyethylene via enthalpy transformation approach. Polymer Engineering and Science, 2009, 49, 1234-1242.	3.1	33
103	Effect of coreâ€shell morphology evolution on the rheology, crystallization, and mechanical properties of PA6/EPDMâ€ <i>g</i> â€MA/HDPE ternary blend. Journal of Applied Polymer Science, 2013, 129, 253-262.	2.6	33
104	Enhanced Thermal Conductivity and Balanced Mechanical Performance of PP/BN Composites with 1 vol% Finely Dispersed MWCNTs Assisted by OBC. Advanced Materials Interfaces, 2019, 6, 1900081.	3.7	33
105	Formation of in situ CB/PET Microfibers in CB/PET/PE Composites by Slit Die Extrusion and Hot Stretching. Macromolecular Materials and Engineering, 2004, 289, 568-575.	3.6	32
106	Scalable fabrication of flexible piezoresistive pressure sensors based on occluded microstructures for subtle pressure and force waveform detection. Journal of Materials Chemistry C, 2020, 8, 16774-16783.	5.5	32
107	A Waveâ€Driven Piezoelectric Solar Evaporator for Water Purification. Advanced Energy Materials, 2022, 12, .	19.5	32
108	Morphology Dependent Double Yielding in Injection Molded Polycarbonate/Polyethylene Blend. Macromolecular Materials and Engineering, 2004, 289, 1004-1011.	3.6	31

#	Article	IF	CITATIONS
109	Polymorphism of a high-molecular-weight racemic poly(<scp>l</scp> -lactide)/poly(<scp>d</scp> -lactide) blend: effect of melt blending with poly(methyl) Tj ETQq1 1	. 9. 78431	431gBT /Ove
110	Suppressing phase coarsening in immiscible polymer blends using nano-silica particles located at the interface. RSC Advances, 2015, 5, 74295-74303.	3.6	30
111	Morphology of gas-assisted and conventional injection molded polycarbonate/polyethylene blend. Journal of Applied Polymer Science, 2006, 102, 3069-3077.	2.6	29
112	Numerical prediction of phaseâ€change heat conduction of injectionâ€molded high density polyethylene thickâ€walled parts via the enthalpy transforming model with mushy zone. Polymer Engineering and Science, 2008, 48, 1707-1717.	3.1	29
113	Morphology prediction and the effect of coreâ€shell structure on the rheological behavior of PP/EPDM/HDPE ternary blends. Polymer Engineering and Science, 2011, 51, 2425-2433.	3.1	29
114	Effect of EPDMâ€ <i>g</i> â€MAH on the morphology and properties of PA6/EPDM/HDPE ternary blends. Polymer Engineering and Science, 2013, 53, 1845-1855.	3.1	29
115	Induced formation of polar phases in poly(vinylidene fluoride) by cetyl trimethyl ammonium bromide. Journal of Materials Science, 2014, 49, 4171-4179.	3.7	29
116	Rheological behavior of PET/HDPEin situ microfibrillar blends: Influence of microfibrils' flexibility. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1205-1216.	2.1	28
117	The role of gas penetration on morphological formation of polycarbonate/polyethylene blend molded by gas-assisted injection molding. Journal of Materials Science, 2007, 42, 7275-7285.	3.7	28
118	Tailoring the impact behavior of polyamide 6 ternary blends via a hierarchical core–shell structure in situ formed in melt mixing. RSC Advances, 2015, 5, 14592-14602.	3.6	28
119	Effect of the surface modification of ammonium polyphosphate on the structure and property of melamine–formaldehyde resin microencapsulated ammonium polyphosphate and polypropylene flame retardant composites. Polymer Bulletin, 2015, 72, 2725-2737.	3.3	28
120	Pore formation mechanism of oriented \hat{l}^2 polypropylene cast films during stretching and optimization of stretching methods: In-situ SAXS and WAXD studies. Polymer, 2019, 163, 86-95.	3.8	28
121	Gasâ€essisted injection molded polypropylene: The skinâ€core structure. Polymer Engineering and Science, 2008, 48, 976-986.	3.1	27
122	Large scale formation of various highly oriented structures in polyethylene/polycarbonate microfibril blends subjected to secondary melt flow. Polymer, 2014, 55, 6399-6408.	3.8	27
123	Oriented polypropylene cast films consisted of β-transcrystals induced by the nucleating agent self-assembly and its homogeneous membranes with high porosity. Polymer, 2018, 151, 136-144.	3.8	27
124	Morphology and mechanical properties of poly (phenylene sulfide)/isotactic polypropylene in situ microfibrillar blends. Polymer Engineering and Science, 2005, 45, 1303-1311.	3.1	26
125	Dynamic Rheological Behavior of HDPE/UHMWPE Blends. Journal of Macromolecular Science - Physics, 2011, 50, 1249-1259.	1.0	26
126	Progress in polyketone materials: blends and composites. Polymer International, 2018, 67, 1478-1487.	3.1	26

Ming-Bo Yang

#	Article	IF	CITATIONS
127	Rational design of MnO2-nanosheets-decroated hierarchical porous carbon nanofiber frameworks as high-performance supercapacitor electrode materials. Electrochimica Acta, 2019, 324, 134891.	5.2	26
128	Mechanochemical preparation of thermoplastic cellulose oleate by ball milling. Green Chemistry, 2021, 23, 2069-2078.	9.0	26
129	Morphology-tensile behavior relationship in injection molded poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock of Materials Science, 2004, 39, 433-443.	10 Tf 50 6 3.7	67 Td (tere 25
130	Crystallization and morphology of iPP/MWCNT prepared by compounding iPP melt with MWCNT aqueous suspension. Colloid and Polymer Science, 2009, 287, 615-620.	2.1	25
131	Morphology and mechanical property of high-density polyethylene parts prepared by gas-assisted injection molding. Colloid and Polymer Science, 2011, 289, 1661-1671.	2.1	25
132	A hierarchically combined reduced graphene oxide/Nickel oxide hybrid supercapacitor device demonstrating compliable flexibility and high energy density. Journal of Colloid and Interface Science, 2022, 618, 399-410.	9.4	25
133	Morphology development of PC/PE blends during compounding in a twin-screw extruder. Polymer Engineering and Science, 2007, 47, 14-25.	3.1	24
134	Role of poly(lactic acid) in the phase transition of poly(vinylidene fluoride) under uniaxial stretching. Journal of Applied Polymer Science, 2013, 129, 1686-1696.	2.6	24
135	Unusual hierarchical distribution of β-crystals and improved mechanical properties of injection-molded bars of isotactic polypropylene. RSC Advances, 2014, 4, 25135-25147.	3.6	24
136	Supercooling-dependent morphology evolution of an organic nucleating agent in poly(<scp>l</scp> -lactide)/poly(<scp>d</scp> -lactide) blends. CrystEngComm, 2017, 19, 1648-1657.	2.6	24
137	Formation of various crystalline structures in a polypropylene/polycarbonate in situ microfibrillar blend during the melt second flow. Physical Chemistry Chemical Physics, 2016, 18, 14030-14039.	2.8	22
138	Essential work of fracture evaluation of fracture behavior of glass bead filled linear low-density polyethylene. Journal of Applied Polymer Science, 2006, 99, 1781-1787.	2.6	21
139	Balanced strength and ductility improvement of in situ crosslinked polylactide/poly(ethylene) Tj ETQq1 1 0.78431	4_rgBT /O\ 3.6	verlock 10 21
140	Chemically bonding BaTiO ₃ nanoparticles in highly filled polymer nanocomposites for greatly enhanced dielectric properties. Journal of Materials Chemistry C, 2020, 8, 8786-8795.	5.5	21
141	Influences of hot stretch ratio on essential work of fracture ofin-situ microfibrillar poly(ethylene) Tj ETQq1 1 0.784	314 rgBT	/Qverlock 1
142	Role of gas delay time on the hierarchical crystalline structure and mechanical property of HDPE molded by gas-assisted injection molding. Colloid and Polymer Science, 2012, 290, 1133-1144.	2.1	20
143	Synergistic effect of stereocomplex crystals and shear flow on the crystallization rate of poly(l-lactic acid): A rheological study. RSC Advances, 2014, 4, 2733-2742.	3.6	20
144	Suppressing phase retraction and coalescence of co-continuous polymer blends: effect of nanoparticles and particle network. RSC Advances, 2014, 4, 49429-49441.	3.6	20

#	Article	IF	CITATIONS
145	Effect of graphite oxide structure on the formation of stable self-assembled conductive reduced graphite oxide hydrogel. Journal of Materials Chemistry C, 2014, 2, 3846.	5.5	20
146	Direct modification of polyketone resin for anion exchange membrane of alkaline fuel cells. Journal of Colloid and Interface Science, 2019, 556, 420-431.	9.4	20
147	Investigation on Tensile Deformation Behavior of Semi-Crystalline Polymers. Journal of Macromolecular Science - Physics, 2009, 48, 799-811.	1.0	19
148	Crystallization behavior and molecular orientation of high density polyethylene parts prepared by gasâ€assisted injection molding. Polymer International, 2012, 61, 622-630.	3.1	19
149	The preparation, structures, and properties of poly(vinylidene fluoride)/multiwall carbon nanotubes nanocomposites. Journal of Applied Polymer Science, 2012, 125, E592.	2.6	19
150	Enantiomeric poly(<scp>d</scp> -lactide) with a higher melting point served as a significant nucleating agent for poly(<scp>l</scp> -lactide). CrystEngComm, 2015, 17, 4334-4342.	2.6	19
151	Effect of chain entanglement on the melt-crystallization behavior of poly(l-lactide) acid. Journal of Polymer Research, 2016, 23, 1.	2.4	19
152	Self-assembled nano-leaf/vein bionic structure of TiO ₂ /MoS ₂ composites for photoelectric sensors. Nanoscale, 2017, 9, 18194-18201.	5.6	19
153	Effect of aspect ratio of multi-wall carbon nanotubes on the dispersion in ethylene- $\hat{1}\pm$ -octene block copolymer and the properties of the Nanocomposites. Journal of Polymer Research, 2019, 26, 1.	2.4	19
154	Leakage-Proof and Malleable Polyethylene Wax Vitrimer Phase Change Materials for Thermal Interface Management. ACS Applied Energy Materials, 2021, 4, 11173-11182.	5.1	19
155	Self-Sensing Actuators Based on a Stiffness Variable Reversible Shape Memory Polymer Enabled by a Phase Change Material. ACS Applied Materials & Interfaces, 2022, 14, 22521-22530.	8.0	19
156	Mechanical Properties and Morphology of LDPE/PP Blends. Journal of Macromolecular Science - Physics, 2007, 46, 963-974.	1.0	18
157	Rheological behaviors and molecular weight distribution characteristics of bimodal highâ€density polyethylene. Journal of Applied Polymer Science, 2011, 121, 1543-1549.	2.6	18
158	Thermal and rheological properties of polyethylene blends with bimodal molecular weight distribution. Journal of Applied Polymer Science, 2013, 129, 2145-2151.	2.6	18
159	Evaluation of Hydrophobic Polyurethane Foam as Sorbent Material for Oil Spill Recovery. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 88-100.	2.2	18
160	Effect of phase coarsening under melt annealing on the electrical performance of polymer composites with a double percolation structure. Physical Chemistry Chemical Physics, 2018, 20, 137-147.	2.8	18
161	Electrospun Modified Polyketone-Based Anion Exchange Membranes with High Ionic Conductivity and Robust Mechanical Properties. ACS Applied Energy Materials, 2021, 4, 5187-5200.	5.1	18
162	Studies on polyamide-6/polyolefin blend system compatibilized with epoxidized natural rubber. Journal of Applied Polymer Science, 2003, 88, 398-403.	2.6	17

#	Article	IF	CITATIONS
163	Morphology and thermal properties of a PC/PE blend with reactive compatibilization. Polymers for Advanced Technologies, 2007, 18, 439-445.	3.2	17
164	Characterization of PP/EPDM/HDPE Ternary Blends: The Role of Two EPDM with Different Viscosity and Processing Method. Polymer-Plastics Technology and Engineering, 2012, 51, 983-990.	1.9	17
165	MWCNTs Supported N,N′-Dicyclohexyl-1,5-diamino-2,6-naphthalenedicarboxamide: A Novel β-Nucleating Agent for Polypropylene. Journal of Macromolecular Science - Physics, 2012, 51, 2412-2427.	1.0	17
166	Driven by electricity: multilayered GO-Fe3O4@PDA-PAM flake assembled micro flower-like anode for high-performance lithium ion batteries. Applied Surface Science, 2020, 499, 143934.	6.1	17
167	Vitrimers of polyolefin elastomer with physically cross-linked network. Journal of Polymer Research, 2021, 28, 1.	2.4	17
168	Effect of annealing on fracture behavior of poly(propylene-block-ethylene) using essential work of fracture analysis. Journal of Applied Polymer Science, 2007, 103, 3438-3446.	2.6	16
169	Effect of repetitive processing on the mechanical properties and fracture toughness of dynamically vulcanized iPP/EPDM blends. Journal of Applied Polymer Science, 2011, 120, 86-94.	2.6	16
170	Effect of compounding procedure on morphology and crystallization behavior of isotactic polypropylene/highâ€density polyethylene/carbon black ternary composites. Polymers for Advanced Technologies, 2012, 23, 1112-1120.	3.2	16
171	Structure of fumed silica gels in dodecane: enhanced network by oscillatory shear. Colloid and Polymer Science, 2012, 290, 151-161.	2.1	16
172	Effects of annealing on the hierarchical crystalline structures and mechanical properties of injectionâ€molded bars of highâ€density polyethylene. Polymer International, 2014, 63, 296-306.	3.1	16
173	Fabrication of a NiO@NF supported free-standing porous carbon supercapacitor electrode using temperature-controlled phase separation method. Journal of Colloid and Interface Science, 2021, 594, 770-780.	9.4	16
174	Study on Amino-functionalized Graphene Oxide/Poly(methyl methacrylate) Nanocomposites. Chemistry Letters, 2012, 41, 683-685.	1.3	15
175	Hierarchical crystalline structures and dynamic mechanical properties of injectionâ€molded bars of HDPE: attributes of temperature field. Polymers for Advanced Technologies, 2013, 24, 541-550.	3.2	15
176	Nanoparticle retarded shape relaxation of dispersed droplets in polymer blends: an understanding from the viewpoint of molecular movement. RSC Advances, 2014, 4, 41059-41068.	3.6	15
177	Enhancing crystallization rate and melt strength of <scp>PLLA</scp> with fourâ€erm <scp>PLLA</scp> grafted silica: The effect of molecular weight of the grafting <scp>PLLA</scp> chains. Journal of Applied Polymer Science, 2018, 135, 45675.	2.6	15
178	Deformation and morphology development of poly(ethylene terephthalate)/polyethylene and polycarbonate/polyethylene blends with high interfacial contact during elongation. Polymer Engineering and Science, 2004, 44, 1561-1570.	3.1	14
179	Structure and Properties of Radiation Cross-Linked Polypropylene Foam. Polymer-Plastics Technology and Engineering, 2011, 50, 1027-1034.	1.9	14
180	Preparing iPP/HDPE/CB functionally gradient materials: influence factors of components and processing. Polymers for Advanced Technologies, 2012, 23, 695-701.	3.2	14

#	Article	IF	CITATIONS
181	An enhancement on the dielectric performance of poly(vinylidene fluoride)-based composite with graphene oxide-BaTiO ₃ hybrid. Nanocomposites, 2019, 5, 61-66.	4.2	14
182	Title is missing!. Journal of Materials Science Letters, 2002, 21, 1063-1067.	0.5	13
183	Stress-induced crystallization of biaxially oriented polypropylene. Journal of Applied Polymer Science, 2003, 89, 686-690.	2.6	13
184	Influence of molecular weight on impact fracture behavior of injection molded high density polyethylene: Scanning electron micrograph observations. Journal of Applied Polymer Science, 2008, 109, 1161-1167.	2.6	13
185	Rheological behavior and mechanical properties of highâ€density polyethylene blends with different molecular weights. Journal of Applied Polymer Science, 2010, 118, 1356-1363.	2.6	13
186	Crystallization, rheological behavior and mechanical properties of poly(vinylidene fluoride) composites containing graphitic fillers: a comparative study. Polymer International, 2012, 61, 1031-1040.	3.1	13
187	Morphology and properties of PP/EPDM binary blends and PP/EPDM/nanoâ€CaCO ₃ ternary blends. Journal of Applied Polymer Science, 2012, 123, 510-519.	2.6	13
188	The Complex Crystalline Structure of Polyethylene/Polycarbonate Microfibril Blends in a Secondary Flow Field. Macromolecular Chemistry and Physics, 2014, 215, 1146-1151.	2.2	13
189	Temperature: a nonnegligible factor for the formation of a structurally stable, self-assembled reduced graphite oxide hydrogel. RSC Advances, 2015, 5, 10-15.	3.6	13
190	Multi-functional carbon integrated rGO-Fe3O4@C composites as porous building blocks to construct anode with high cell capacity and high areal capacity for lithium ion batteries. Journal of Electroanalytical Chemistry, 2019, 840, 430-438.	3.8	13
191	Effects of modified nano-silica on the microstructure of PVDF and its microporous membranes. Journal of Polymer Research, 2019, 26, 1.	2.4	13
192	Boosting solar steam generation in dynamically tunable polymer porous architectures. Polymer, 2021, 226, 123811.	3.8	13
193	Essential work of fracture of glass bead filled low density polyethylene. Journal of Materials Science, 2005, 40, 5323-5326.	3.7	12
194	A simple method for forecast of cooling time of highâ€density polyethylene during gasâ€assisted injection molding. Journal of Applied Polymer Science, 2010, 117, 729-735.	2.6	12
195	Hierarchically oriented crystalline structures of HDPE induced by strong second melt penetration. RSC Advances, 2014, 4, 31960.	3.6	12
196	Morphology evolution and the tri-continuous morphology formation of a PVDF/PS/HDPE ternary blend in melt mixing. RSC Advances, 2016, 6, 38803-38810.	3.6	12
197	Strong shear-driven large scale formation of hybrid shish-kebab in carbon nanofiber reinforced polyethylene composites during the melt second flow. Physical Chemistry Chemical Physics, 2016, 18, 30452-30461.	2.8	12
198	The effect of chain mobility on the coarsening process of co-continuous, immiscible polymer blends under quiescent melt annealing. Physical Chemistry Chemical Physics, 2017, 19, 12712-12719.	2.8	12

#	Article	IF	CITATIONS
199	Improvement in the output performance of polyethylene oxide-based triboelectric nanogenerators by introducing core–shell Ag@SiO ₂ particles. Journal of Materials Chemistry C, 2021, 10, 265-273.	5.5	12
200	Macromolecule Relaxation Directed 3D Nanofiber Architecture in Stretchable Fibrous Mats for Wearable Multifunctional Sensors. ACS Applied Materials & Interfaces, 2022, 14, 15678-15686.	8.0	12
201	Crystallization and phase morphology of injectionâ€molded isotactic polypropylene (iPP)/syndiotactic polypropylene (sPP) blends. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2948-2955.	2.1	11
202	Effect of temperature gradient on the development of β phase polypropylene in dynamically vulcanized PP/EPDM blends. Colloid and Polymer Science, 2009, 287, 1237-1242.	2.1	11
203	Shear field in the mold cavity of multimelt multiâ€injection molding revealed by the morphology distribution of a model polymer blend. Polymer Engineering and Science, 2014, 54, 2345-2353.	3.1	11
204	Extension of the orientation region of high density polyethylene molded by gasâ€assisted injection molding: control of the thermal field. Polymer International, 2014, 63, 1997-2007.	3.1	11
205	Effect of the MWCNTs selective localization on the dielectric properties for PVDF/PS/HDPE ternary blends with in situ formed core–shell structure. RSC Advances, 2016, 6, 58493-58500.	3.6	11
206	Nitrogen-doped carbon-coated Fe3O4/rGO nanocomposite anode material for enhanced initial coulombic efficiency of lithium-ion batteries. Ionics, 2019, 25, 1513-1521.	2.4	11
207	A Facile Fabrication of PCL/OBC/MWCNTs Nanocomposite with Selective Dispersion of MWCNTs to Access Electrically Responsive Shape Memory Effect. Polymer Composites, 2019, 40, E1353-E1363.	4.6	11
208	Constructing Sandwich-Architectured Poly(<scp>l</scp> -lactide)/High-Melting-Point Poly(<scp>l</scp> -lactide) Nonwoven Fabrics: Toward Heat-Resistant Poly(<scp>l</scp> -lactide) Barrier Biocomposites with Full Biodegradability. ACS Applied Bio Materials, 2019, 2, 1357-1367.	4.6	11
209	Waterproof Phase Change Material with a Facilely Incorporated Cellulose Nanocrystal/Poly(<i>N</i> -isopropylacrylamide) Network for All-Weather Outdoor Thermal Energy Storage. ACS Applied Materials & Interfaces, 2020, 12, 53365-53375.	8.0	11
210	Biobinder Nanocoating for Upgrading the Assembling Structures of High-Capacity Composite Electrodes with a Robust Polymeric Artificial Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2020, 12, 58201-58211.	8.0	11
211	Formation mechanism of hierarchically crystalline structures under coupled external fields in multi-melt multi-injection molding: Simulation and experiment. Composites Part B: Engineering, 2020, 188, 107770.	12.0	11
212	Imidazole-functionalized polyketone-based polyelectrolytes with efficient ionic channels and superwettability for alkaline polyelectrolyte fuel cells and multiple liquid purification. Journal of Materials Chemistry A, 2021, 9, 14827-14840.	10.3	11
213	In-situ construction of high-modulus nanospheres on elastomer fibers for linearity-tunable strain sensing. Chemical Engineering Journal, 2022, 431, 133488.	12.7	11
214	Effect of α―and βâ€nucleating agents on the fracture behavior of polypropyleneâ€ <i>co</i> â€ethylene. Journal of Applied Polymer Science, 2008, 108, 591-597.	2.6	10
215	Dynamic Rheological Behavior of Copolymerized Linear Low-Density Polyethylenes: Effect of Molecular Weight and Its Distribution. Journal of Macromolecular Science - Physics, 2009, 48, 844-855.	1.0	10
216	Simulation of Gas-Assisted Injection Molding of High-Density Polyethylene: The Role of Rheological Properties and Physical Fields on the Crystalline Morphology. Journal of Macromolecular Science - Physics, 2009, 48, 1201-1211.	1.0	10

#	Article	IF	CITATIONS
217	Effect of Processing Method on Morphological and Rheological Properties of PC/CaCO3Nanocomposites. Polymer-Plastics Technology and Engineering, 2009, 48, 788-793.	1.9	10
218	Preparation of carbon black/polypropylene nanocomposite with low percolation threshold using mild blending method. Journal of Applied Polymer Science, 2010, 115, 2629-2634.	2.6	10
219	Prediction of Heat Conduction with Phase-change Effects during Cooling Stage of Injection Molding of High-density Polyethylene: Approximate Integral Approach. Journal of Macromolecular Science - Physics, 2010, 49, 734-749.	1.0	10
220	The morphology and mechanical properties of PP/EPDM/nano-CaCO3 composites: effect of initial mixing state. Polymer Bulletin, 2013, 70, 2935-2952.	3.3	10
221	A novel hierarchical crystalline structure of injection-molded bars of linear polymer: co-existence of bending and normal shish–kebab structure. Colloid and Polymer Science, 2013, 291, 1503-1511.	2.1	10
222	Insight into the nucleating and reinforcing efficiencies of carbon nanofillers in poly(vinylidene) Tj ETQq0 0 0 rgBT (2013, 48, 8509-8519.	Overlock 3.7	10 Tf 50 547 10
223	Encapsulated phase structure and morphology evolution during quiescent annealing in ternary polymer blends with PA6 as matrix. Journal of Applied Polymer Science, 2014, 131, .	2.6	10
224	An unusual transition from point-like to fibrillar crystals in injection-molded polyethylene articles induced by lightly cross-linking and melt penetration. RSC Advances, 2015, 5, 21640-21650.	3.6	10
225	Correlation between phase separation and rheological behavior in bitumen/SBS/PE blends. RSC Advances, 2018, 8, 41713-41721.	3.6	10
226	Morphology Evolution in PC/PE Blends with and without Compatibilization During Twin-Screw Extrusion. Polymer-Plastics Technology and Engineering, 2010, 49, 503-509.	1.9	9
227	Study on the solidification kinetics of high-density polyethylene during thin-walled injection molding process. Journal of Polymer Engineering, 2012, 32, 355-363.	1.4	9
228	Effect of Viscosity Ratio on the Crystalline Morphologies and Mechanical Property of Multi-Melt Multi-Injection Molded Parts. Polymer-Plastics Technology and Engineering, 2014, 53, 1272-1282.	1.9	9
229	Tuning Crystalline Morphology of Highâ€Density Polyethylene by Tailoring its Molecular Weight Distribution for Coupling with a Secondary Flow Field. Macromolecular Materials and Engineering, 2015, 300, 901-910.	3.6	9
230	Photo-Driven Self-Healing of Arbitrary Nondestructive Damage in Polyethylene-Based Nanocomposites. ACS Applied Materials & Interfaces, 2020, 12, 1650-1657.	8.0	9
231	Synthesis of thermoplastic cellulose grafted polyurethane from regenerated cellulose. Cellulose, 2020, 27, 8667-8679.	4.9	9
232	Double yielding in PA6: Effect of mold temperature and moisture content. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1217-1225.	2.1	8
233	Effect of Injection Parameters and Addition of Nanoscale Materials on the Shrinkage of Polypropylene Copolymer. Journal of Macromolecular Science - Physics, 2009, 48, 573-586.	1.0	8
234	The Effects of Different Processing Methods on the Morphology and Properties of PP/EPDM/Nano-CaCO3 Ternary Blend. Journal of Macromolecular Science - Physics, 2011, 50, 806-820.	1.0	8

#	Article	IF	CITATIONS
235	Mechanical and thermal characteristics and morphology of polyamide 6/isotactic polypropylene blends in the presence of a βâ€nucleating agent. Journal of Applied Polymer Science, 2011, 121, 554-562.	2.6	8
236	Effect of carbon nanotubeâ€supported β nucleating agent on the thermal properties, morphology, and mechanical properties of polyamide 6/isotactic polypropylene blends. Journal of Applied Polymer Science, 2012, 124, 993-999.	2.6	8
237	Crystallization kinetics of γ phase poly(vinylidene fluoride)(PVDF) induecd by tetrabutylammonium bisulfate. Journal of Polymer Research, 2014, 21, 1.	2.4	8
238	Factors influencing the resistivity–temperature behavior of carbon black filled isotactic polypropylene/high density polyethylene composites. Polymer Bulletin, 2014, 71, 1403-1419.	3.3	8
239	Formation of double skin-core orientated structure in injection-molded Polyethylene parts: Effects of ultra-high molecular weight Polyethylene and temperature field. Journal of Polymer Research, 2014, 21, 1.	2.4	8
240	Enhanced dielectric properties of polyamide 11/multiâ€walled carbon nanotubes composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	8
241	Morphological Evolution of Polystyrene/PolyÂethylene Blend Induced by Strong Second Melt Penetration. Macromolecular Materials and Engineering, 2016, 301, 714-724.	3.6	8
242	High Efficiency Conversion of Regenerated Cellulose Hydrogel Directly to Functionalized Cellulose Nanoparticles. Macromolecular Rapid Communications, 2017, 38, 1700409.	3.9	8
243	Scalable Synthesis of an Artificial Polydopamine Solidâ€Electrolyteâ€Interfaceâ€Assisted 3D rGO/Fe ₃ O ₄ @PDA Hydrogel for a Highly Stable Anode with Enhanced Lithiumâ€Ionâ€Storage Properties. ChemElectroChem, 2019, 6, 1069-1077.	3.4	8
244	A facile strategy towards heterogeneous preparation of thermoplastic cellulose grafted polyurethane from amorphous regenerated cellulose paste. International Journal of Biological Macromolecules, 2020, 161, 177-186.	7.5	8
245	Degradable ultrathin high-performance photocatalytic hydrogen generator from porous electrospun composite fiber membrane with enhanced light absorption ability. Journal of Materials Chemistry A, 2021, 9, 10277-10288.	10.3	8
246	Regenerated cellulose aerogel: Morphology control and the application as the template for functional cellulose nanoparticles. Journal of Applied Polymer Science, 2020, 137, 49127.	2.6	8
247	Effect of Ultrafine Full-Vulcanized Powdered Rubber on the Properties of the Intumescent Fire Retardant Polypropylene. Journal of Macromolecular Science - Physics, 2010, 49, 143-154.	1.0	7
248	Essential Work of Fracture Parameters of Injection-Molded Polypropylene/Polyolefin Elastomer Blends. Journal of Macromolecular Science - Physics, 2010, 49, 231-241.	1.0	7
249	Injection Molding Shrinkage and Mechanical Properties of Polypropylene Blends. Journal of Macromolecular Science - Physics, 2011, 50, 1747-1760.	1.0	7
250	Thermal Oxidation and Structural Changes of Degraded Polyethylene in an Oxygen Atmosphere. Journal of Macromolecular Science - Physics, 2011, 50, 1376-1387.	1.0	7
251	Morphological Study of Linear Low-Density Polyethylene Molded by Gas-Assisted Injection Molding. Polymer-Plastics Technology and Engineering, 2011, 50, 804-809.	1.9	7
252	A thermal method for quantitatively determinating the content of short chain branching in ethylene/α-olefin copolymers. Journal of Thermal Analysis and Calorimetry, 2012, 110, 1389-1394.	3.6	7

#	Article	IF	CITATIONS
253	Influence of high molecular weight component on the hierarchical crystalline structures of injection-molded bars of polyethylene. Polymer International, 2014, 63, 1513-1522.	3.1	7
254	Largely enhanced molecular orientation and mechanical property of injection-molded high-density polyethylene parts via the synergistic effect of polyamide 6 in situ microfibrillar and intense shear flow. Colloid and Polymer Science, 2014, 292, 3033-3044.	2.1	7
255	Poly(4-methyl-1-pentene)/alkylated graphene oxide nanocomposites: the emergence of a new crystal structure. RSC Advances, 2015, 5, 4238-4244.	3.6	7
256	Hierarchical crystalline structures induced by temperature profile in HDPE bars during melt penetration process. Chinese Journal of Polymer Science (English Edition), 2017, 35, 108-122.	3.8	7
257	Synthesis of Inorganic Silica Grafted Three-arm PLLA and Their Behaviors for PLA Matrix. Chinese Journal of Polymer Science (English Edition), 2019, 37, 216-226.	3.8	7
258	An Effective Strategy to Achieve Ultralow Electrical Percolation Threshold with CNTs Anchoring at the Interface of PVDF/PS Biâ€Continuous Structures to Form an Interfacial Conductive Layer. Macromolecular Materials and Engineering, 2020, 305, 1900835.	3.6	7
259	Fabrication of poly(εâ€caprolactone) (PCL) /poly(propylene carbonate) (PPC) /ethyleneâ€Î±â€octene block copolymer (OBC) triple shape memory blends with cycling performance by constructing a coâ€continuous phase morphology. Polymer International, 2020, 69, 702-711.	3.1	7
260	Rheological Properties of PC/EVA Blend Compatibilized with the Transesterification. Polymer-Plastics Technology and Engineering, 2007, 46, 175-182.	1.9	6
261	Double yielding in PA6/TPVâ€MAH blends: Effect of crosslinking degree of the dispersed phase. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 912-922.	2.1	6
262	Grafted Polyolefin-Coated Synthetic Mica-Filled Polypropylene- <i>co</i> -ethylene Composites: A Study on the Interfacial Morphology and Properties. Journal of Macromolecular Science - Physics, 2010, 49, 1-17.	1.0	6
263	Hierarchical crystalline morphologies induced by a distinctly different melt penetrating process. RSC Advances, 2015, 5, 98299-98308.	3.6	6
264	Influences of melt-draw ratio and annealing on the crystalline structure and orientation of poly(4-methyl-1-pentene) casting films. RSC Advances, 2016, 6, 62038-62044.	3.6	6
265	The massive formation of hybrid shishâ€kebab structures in <scp>HDPE</scp> / <scp>PA</scp> 6 microfibril blend subjected to melt second flow. Journal of Applied Polymer Science, 2017, 134, 45274.	2.6	6
266	A Facile and Rapid Approach to Lotus‣eedpod‣tructured Electronic Skin for Monitoring Diverse Physical Stimuli. Advanced Materials Technologies, 2021, 6, 2001084.	5.8	6
267	Influence of Matrix Polymer on Deformation and Morphology of Injection Molded Immiscible Blends with High Interfacial Contact. Polymer-Plastics Technology and Engineering, 2005, 44, 583-602.	1.9	5
268	Fracture behaviour of polypropylene sheets filled with epoxidized natural rubber (ENR)-treated coal gangue powder. Journal of Materials Science, 2007, 42, 3856-3864.	3.7	5
269	Structure and Properties of Reactive Extruded Ethylene-block-co-Polypropylene: Influence of Dicumyl Peroxide and Divinylbenzene. Journal of Macromolecular Science - Physics, 2008, 47, 1236-1250.	1.0	5
270	Heterogeneous dispersion of the compatibilizer in the injection molding of polyamide 6/polypropylene blends. Journal of Applied Polymer Science, 2009, 113, 299-305.	2.6	5

#	Article	IF	CITATIONS
271	Studies on the Blends of Polyamide66 and Thermoplastic Polyimide. Journal of Macromolecular Science - Physics, 2010, 49, 629-639.	1.0	5
272	Effects of spatial confinement and selective distribution of CB particles on the crystallization behavior of polypropylene. Journal of Applied Polymer Science, 2012, 123, 3652-3661.	2.6	5
273	Influence of HMW tail chains on the structural evolution of HDPE induced by second melt penetration. Physical Chemistry Chemical Physics, 2017, 19, 17745-17755.	2.8	5
274	Influence of annealing treatment on the structure and properties of poly(4â€methylâ€1â€pentene)â€based films and membranes. Journal of Applied Polymer Science, 2018, 135, 46491.	2.6	5
275	Effect of external field on the lamellar crystalline structure and properties of poly(4â€methylâ€1â€pentene) casting film. Journal of Applied Polymer Science, 2019, 136, 47293.	2.6	5
276	Highly anisotropic functional conductors fabricated by multi-melt multi-injection molding (M3IM): A synergetic role of multiple melt flows and confined interface. Composites Science and Technology, 2019, 171, 127-134.	7.8	5
277	Morphologies, interfacial interaction and mechanical performance of super-tough nanostructured PK/PA6 blends. Polymer Testing, 2020, 91, 106777.	4.8	5
278	Aligned wave-like elastomer fibers with robust conductive layers <i>via</i> electroless deposition for stretchable electrode applications. Journal of Materials Chemistry B, 2021, 9, 8801-8808.	5.8	5
279	The Effects of Vinyl Acetate and Polyoxyethylene on the Properties of Halogen-Free Flame Retardant EVA Composites. Journal of Macromolecular Science - Physics, 2012, 51, 1822-1837.	1.0	4
280	Micro-Structure and Fracture Behavior of High-Melt-Strength PPs Prepared by Reactive Extrusion. Journal of Macromolecular Science - Physics, 2012, 51, 48-59.	1.0	4
281	Study of the morphology and temperature-resistivity effect of injection-molded iPP/HDPE/CB composites. Polymer Bulletin, 2014, 71, 1711-1725.	3.3	4
282	A new insight into multi-tier structure tailoring: Synchronous utilization of particle migration and incompatible interface separation under shear flow. Polymer, 2020, 194, 122384.	3.8	4
283	Flow-induced morphology of cast polypropylene. Polymer Engineering and Science, 2004, 44, 1656-1661.	3.1	3
284	Thermal Degradation of HDPE in a Batch Pressure Reactor: Reaction Time and Mechanical Stirring Effect. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 1123-1129.	2.2	3
285	Isothermal crystallization process of poly(4-methyl-1-pentene)/alkylated graphene oxide nanocomposites: thermal analysis and rheology study. RSC Advances, 2015, 5, 82005-82011.	3.6	3
286	The molecular weight dependence of the crystallization behavior of four-arm poly(L-lactide). Colloid and Polymer Science, 2016, 294, 1865-1870.	2.1	3
287	Supramolecular selfâ \in s sembly of compound l̂ ² nucleating agent and effect on polypropylene microporous membrane. Polymer Crystallization, 2019, 2, e10080.	0.8	3
288	Role of Controlled Diameter of Polyamide 6 (PA6) Fibers on the Formation of Interfacial Hybrid Crystal Morphology in HDPE/PA6 Microfibril Blend. Industrial & Engineering Chemistry Research, 2019, 58, 9056-9064.	3.7	3

#	Article	IF	CITATIONS
289	Novel method for fabrication of PP/HDPE/PP trilayer microporous membrane with a highly orientated structure. Journal of Applied Polymer Science, 2019, 136, 47249.	2.6	3
290	Formation of oriented βâ€transcrystals induced by selfâ€assembly of nucleating agent and its micropores formation during uniaxial stretching. Polymer Crystallization, 2020, 3, e10129.	0.8	3
291	Study of Crystal Structure of Polypropylene/Mg ₂ B ₂ O ₅ Whisker Composite. Journal of Macromolecular Science - Physics, 2009, 48, 405-413.	1.0	2
292	Hierarchical Distribution of β-Phase in Compression- and Injection-Molded, Polypropylene-Based TPV. Journal of Macromolecular Science - Physics, 2010, 50, 62-74.	1.0	2
293	Thermorheology and Crystallization Behaviors of Polyethylenes: Effect of Molecular Attributes. Journal of Macromolecular Science - Physics, 2013, 52, 1479-1493.	1.0	2
294	Role of gas cooling time on crystalline morphology and mechanical property of the HDPE parts prepared by gas-assisted injection molding. Colloid and Polymer Science, 2014, 292, 1129-1142.	2.1	2
295	Solvent-controlled formation of a reduced graphite oxide gel via hydrogen bonding. RSC Advances, 2016, 6, 27267-27271.	3.6	2
296	Excellent mechanical performance and enhanced dielectric properties of OBC/SiO2 elastomeric nanocomposites: effect of dispersion of the SiO2 nanoparticles. RSC Advances, 2017, 7, 46297-46305.	3.6	2
297	Facile preparation of polymer coating on reduced graphene oxide sheets by plasma polymerization. Nanocomposites, 2019, 5, 74-83.	4.2	2
298	The effect of alkylated graphene oxide on the crystal structure of poly(4â€methylâ€1â€pentene) during uniaxial deformation at high temperature. Polymer Composites, 2019, 40, E493.	4.6	2
299	Piezoresistive behavior of elastomer composites with segregated network of carbon nanostructures and alumina. Nano Materials Science, 2023, 5, 312-318.	8.8	2
300	Isothermal-Treatment-Induced Network Formation of Carbon Black in Isotactic Polypropylene/Carbon Black Composites. Journal of Macromolecular Science - Physics, 2013, 52, 762-772.	1.0	1
301	Description of second flow field via the deformation of polystyrene phase in highâ€density polyethylene matrix. Journal of Applied Polymer Science, 2016, 133, .	2.6	1
302	New understanding for the formation of conductive network in the nanocomposites during the crystallization of matrix. Journal of Polymer Research, 2016, 23, 1.	2.4	1
303	The composition, morphology, and mechanical properties of ethylene propylene diene monomerâ€encapsulated coal gangue powder/polypropylene composites. Polymer Composites, 2010, 31, 10-17.	4.6	0
304	Characteristic Shear Rate for Nonlinear Viscoelastic Behavior in a Polydisperse Polymer Solution. Journal of Macromolecular Science - Physics, 2010, 50, 123-131.	1.0	0
305	Hierarchical crystalline structures induced by temperature profile in HDPE bars during melt penetration process. Chinese Journal of Polymer Science (English Edition), 2016, , 1.	3.8	0
306	A Waveâ€Driven Piezoelectric Solar Evaporator for Water Purification (Adv. Energy Mater. 21/2022). Advanced Energy Materials, 2022, 12, .	19.5	0