Hoon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1161198/publications.pdf Version: 2024-02-01

HOONKIM

#	Article	IF	CITATIONS
1	Exogenous chalcone synthase expression in developing poplar xylem incorporates naringenin into lignins. Plant Physiology, 2022, 188, 984-996.	4.8	14
2	Flavonoids naringenin chalcone, naringenin, dihydrotricin, and tricin are lignin monomers in papyrus. Plant Physiology, 2022, 188, 208-219.	4.8	28
3	Rerouting of the lignin biosynthetic pathway by inhibition of cytosolic shikimate recycling in transgenic hybrid aspen. Plant Journal, 2022, 110, 358-376.	5.7	10
4	Density functional theory study on the coupling and reactions of diferuloylputrescine as a lignin monomer. Phytochemistry, 2022, 197, 113122.	2.9	0
5	Unconventional lignin monomers—Extension of the lignin paradigm. Advances in Botanical Research, 2022, , 1-39.	1.1	13
6	The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. Nature Plants, 2022, 8, 500-512.	9.3	42
7	H-lignin can be deposited independently of CINNAMYL ALCOHOL DEHYDROGENASE C and D in Arabidopsis. Plant Physiology, 2022, 189, 2015-2028.	4.8	4
8	Overexpression of the scopoletin biosynthetic pathway enhances lignocellulosic biomass processing. Science Advances, 2022, 8, .	10.3	13
9	Rewired phenolic metabolism and improved saccharification efficiency of a <i>Zea mays cinnamyl alcohol dehydrogenase 2 (zmcad2)</i> mutant. Plant Journal, 2021, 105, 1240-1257.	5.7	13
10	Maize specialized metabolome networks reveal organ-preferential mixed glycosides. Computational and Structural Biotechnology Journal, 2021, 19, 1127-1144.	4.1	15
11	Radical Coupling Reactions of Hydroxystilbene Glucosides and Coniferyl Alcohol: A Density Functional Theory Study. Frontiers in Plant Science, 2021, 12, 642848.	3.6	8
12	Pithâ€specific lignification in <i>Nicotiana attenuata</i> as a defense against a stemâ€boring herbivore. New Phytologist, 2021, 232, 332-344.	7.3	23
13	CRISPRâ€Cas9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in <i>Populus tremula</i> × <i>P. alba</i> . Plant Biotechnology Journal, 2021, 19, 2221-2234.	8.3	29
14	Incorporation of catechyl monomers into lignins: lignification from the non-phenolic end <i>via</i> Diels–Alder cycloaddition?. Green Chemistry, 2021, 23, 8995-9013.	9.0	6
15	Involvement of CesA4, CesA7-A/B and CesA8-A/B in secondary wall formation in Populus trichocarpa wood. Tree Physiology, 2020, 40, 73-89.	3.1	30
16	Coupling and Reactions of Lignols and New Lignin Monomers: A Density Functional Theory Study. ACS Sustainable Chemistry and Engineering, 2020, 8, 11033-11045.	6.7	12
17	Mechanistic Study of Diaryl Ether Bond Cleavage during Palladium atalyzed Lignin Hydrogenolysis. ChemSusChem, 2020, 13, 4487-4494	6.8	36
18	Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall ACS Sustainable Chemistry and Engineering, 2020, 8, 4997-5012	6.7	184

#	Article	IF	CITATIONS
19	A Century-Old Mystery Unveiled: Sekizaisou is a Natural Lignin Mutant. Plant Physiology, 2020, 182, 1821-1828.	4.8	24
20	Monolignol Benzoates Incorporate into the Lignin of Transgenic <i>Populus trichocarpa</i> Depleted in C3H and C4H. ACS Sustainable Chemistry and Engineering, 2020, 8, 3644-3654.	6.7	39
21	COSY catalyses trans–cis isomerization and lactonization in the biosynthesis of coumarins. Nature Plants, 2019, 5, 1066-1075.	9.3	64
22	Radical coupling reactions of piceatannol and monolignols: A density functional theory study. Phytochemistry, 2019, 164, 12-23.	2.9	17
23	Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin. Plant Physiology, 2019, 180, 1310-1321.	4.8	43
24	Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. Plant Science, 2019, 287, 110070.	3.6	14
25	<scp>CAD</scp> 1 and <scp>CCR</scp> 2 protein complex formation in monolignol biosynthesis in <i>Populus trichocarpa</i> . New Phytologist, 2019, 222, 244-260.	7.3	43
26	Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nature Communications, 2018, 9, 1579.	12.8	162
27	Structural Characterization of Lignin from Maize (Zea mays L.) Fibers: Evidence for Diferuloylputrescine Incorporated into the Lignin Polymer in Maize Kernels. Journal of Agricultural and Food Chemistry, 2018, 66, 4402-4413.	5.2	38
28	Selective Oxidation of Lignin Model Compounds. ChemSusChem, 2018, 11, 2045-2050.	6.8	39
29	<i>In Vitro</i> Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units. Applied and Environmental Microbiology, 2018, 84, .	3.1	41
30	Variability in Lignin Composition and Structure in Cell Walls of Different Parts of Macaúba (<i>Acrocomia aculeata</i>) Palm Fruit. Journal of Agricultural and Food Chemistry, 2018, 66, 138-153.	5.2	70
31	An "ideal lignin―facilitates full biomass utilization. Science Advances, 2018, 4, eaau2968.	10.3	184
32	Structural Characterization of Lignins from Willow Bark and Wood. Journal of Agricultural and Food Chemistry, 2018, 66, 7294-7300.	5.2	50
33	Cell Wall Characteristics of a Maize Mutant Selected for Decreased Ferulates. American Journal of Plant Sciences, 2018, 09, 446-466.	0.8	6
34	Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins. Plant Physiology, 2017, 174, 2072-2082.	4.8	90
35	The Enzyme Activity and Substrate Specificity of Two Major Cinnamyl Alcohol Dehydrogenases in Sorghum (<i>Sorghum bicolor</i>), SbCAD2 and SbCAD4. Plant Physiology, 2017, 174, 2128-2145.	4.8	32
36	Natural acetylation impacts carbohydrate recovery during deconstruction of Populus trichocarpa wood. Biotechnology for Biofuels, 2017, 10, 48.	6.2	40

#	Article	IF	CITATIONS
37	Altering carbon allocation in hybrid poplar (<i>Populus albaÂ×Âgrandidentata</i>) impacts cell wall growth and development. Plant Biotechnology Journal, 2017, 15, 865-878.	8.3	24
38	Characterization and Elimination of Undesirable Protein Residues in Plant Cell Wall Materials for Enhancing Lignin Analysis by Solution-State Nuclear Magnetic Resonance Spectroscopy. Biomacromolecules, 2017, 18, 4184-4195.	5.4	94
39	Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. Plant Physiology, 2017, 175, 1018-1039.	4.8	99
40	Silencing <i>CAFFEOYL SHIKIMATE ESTERASE</i> Affects Lignification and Improves Saccharification in Poplar. Plant Physiology, 2017, 175, 1040-1057.	4.8	90
41	Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm <i>Phoenix canariensis</i> . Plant Physiology, 2017, 175, 1058-1067.	4.8	34
42	An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in <i>Medicago truncatula</i> . Plant Journal, 2016, 86, 363-375.	5.7	111
43	Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase. Nature Communications, 2016, 7, 11989.	12.8	61
44	Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 2016, 354, 329-333.	12.6	944
45	Understanding the Physicochemical Characteristics and the Improved Enzymatic Saccharification of Corn Stover Pretreated with Aqueous and Gaseous Ammonia. Bioenergy Research, 2016, 9, 67-76.	3.9	48
46	Small Glycosylated Lignin Oligomers Are Stored in Arabidopsis Leaf Vacuoles. Plant Cell, 2015, 27, 695-710.	6.6	90
47	Naturally p-Hydroxybenzoylated Lignins in Palms. Bioenergy Research, 2015, 8, 934-952.	3.9	99
48	Mutation of the Inducible <i>ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2</i> Alters Lignin Composition and Improves Saccharification Â. Plant Physiology, 2014, 166, 1956-1971.	4.8	63
49	Phenylcoumaran Benzylic Ether Reductase Prevents Accumulation of Compounds Formed under Oxidative Conditions in Poplar Xylem. Plant Cell, 2014, 26, 3775-3791.	6.6	43
50	Stereochemical Features of Glutathione-dependent Enzymes in the Sphingobium sp. Strain SYK-6 β-Aryl Etherase Pathway. Journal of Biological Chemistry, 2014, 289, 8656-8667.	3.4	58
51	A gel-state 2D-NMR method for plant cell wall profiling and analysis: a model study with the amorphous cellulose and xylan from ball-milled cotton linters. RSC Advances, 2014, 4, 7549-7560.	3.6	100
52	Plant cell wall profiling by fast maximum likelihood reconstruction (FMLR) and region-of-interest (ROI) segmentation of solution-state 2D 1H–13C NMR spectra. Biotechnology for Biofuels, 2013, 6, 45.	6.2	18
53	Two-Dimensional NMR Evidence for Cleavage of Lignin and Xylan Substituents in Wheat Straw Through Hydrothermal Pretreatment and Enzymatic Hydrolysis. Bioenergy Research, 2013, 6, 211-221.	3.9	68
54	Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in <i>Populus trichocarpa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10848-10853.	7.1	329

#	Article	IF	CITATIONS
55	Caffeoyl Shikimate Esterase (CSE) Is an Enzyme in the Lignin Biosynthetic Pathway in <i>Arabidopsis</i> . Science, 2013, 341, 1103-1106.	12.6	432
56	Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin. Journal of the American Chemical Society, 2013, 135, 6415-6418.	13.7	547
57	Breeding with rare defective alleles (BRDA): a natural <i><scp>P</scp>opulus nigra </i> <scp>HCT</scp> mutant with modified lignin as a case study. New Phytologist, 2013, 198, 765-776.	7.3	92
58	Preparation of monolignol γ-acetate, γ-p-hydroxycinnamate, and γ-p-hydroxybenzoate conjugates: selective deacylation of phenolic acetates with hydrazine acetate. RSC Advances, 2013, 3, 21964.	3.6	17
59	Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13660-13665.	7.1	115
60	An Engineered Monolignol 4- <i>O</i> -Methyltransferase Depresses Lignin Biosynthesis and Confers Novel Metabolic Capability in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 3135-3152.	6.6	92
61	Identification of Grass-specific Enzyme That Acylates Monolignols with p-Coumarate. Journal of Biological Chemistry, 2012, 287, 8347-8355.	3.4	140
62	Whole plant cell wall characterization using solution-state 2D NMR. Nature Protocols, 2012, 7, 1579-1589.	12.0	563
63	The DUF579 domain containing proteins IRX15 and IRX15â€L affect xylan synthesis in Arabidopsis. Plant Journal, 2011, 66, 387-400.	5.7	120
64	Lignin Composition and Structure in Young versus Adult <i>Eucalyptus globulus</i> Plants. Plant Physiology, 2011, 155, 667-682.	4.8	263
65	ldentifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability. BMC Plant Biology, 2010, 10, 114.	3.6	75
66	Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis. Plant Journal, 2010, 64, 885-897.	5.7	114
67	Mass Spectrometry-Based Sequencing of Lignin Oligomers. Plant Physiology, 2010, 153, 1464-1478.	4.8	166
68	Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Organic and Biomolecular Chemistry, 2010, 8, 576-591.	2.8	565
69	Mass Spectrometry-Based Fragmentation as an Identification Tool in Lignomics. Analytical Chemistry, 2010, 82, 8095-8105.	6.5	140
70	Suppression of 4-Coumarate-CoA Ligase in the Coniferous Gymnosperm <i>Pinus radiata</i> Â Â. Plant Physiology, 2009, 149, 370-383.	4.8	166
71	Cell wall fermentation kinetics are impacted more by lignin content and ferulate crossâ€linking than by lignin composition. Journal of the Science of Food and Agriculture, 2009, 89, 122-129.	3.5	116
72	Grass lignin acylation: p-coumaroyl transferase activity and cell wall characteristics of C3 and C4 grasses. Planta, 2009, 229, 1253-1267.	3.2	94

#	Article	IF	CITATIONS
73	Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant Journal, 2008, 53, 368-379.	5.7	114
74	Solution-state 2D NMR of Ball-milled Plant Cell Wall Gels in DMSO-d 6. Bioenergy Research, 2008, 1, 56-66.	3.9	266
75	Peroxidase-Catalyzed Oligomerization of Ferulic Acid Esters. Journal of Agricultural and Food Chemistry, 2008, 56, 10368-10375.	5.2	29
76	Downregulation of Cinnamoyl-Coenzyme A Reductase in Poplar: Multiple-Level Phenotyping Reveals Effects on Cell Wall Polymer Metabolism and Structure. Plant Cell, 2007, 19, 3669-3691.	6.6	352
77	Effects of Coumarate 3-Hydroxylase Down-regulation on Lignin Structure. Journal of Biological Chemistry, 2006, 281, 8843-8853.	3.4	209
78	Simplified Preparation of Coniferyl and Sinapyl Alcohols. Journal of Agricultural and Food Chemistry, 2005, 53, 3693-3695.	5.2	35
79	Profiling of Oligolignols Reveals Monolignol Coupling Conditions in Lignifying Poplar Xylem. Plant Physiology, 2004, 136, 3537-3549.	4.8	180
80	Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochemistry Reviews, 2004, 3, 29-60.	6.5	1,282
81	Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochemistry Reviews, 2004, 3, 79-96.	6.5	239
82	Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins. Phytochemistry, 2004, 65, 313-321.	2.9	85
83	NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. Organic and Biomolecular Chemistry, 2003, 1, 268-281.	2.8	145
84	Sinapate Dehydrodimers and Sinapateâ^'Ferulate Heterodimers in Cereal Dietary Fiber. Journal of Agricultural and Food Chemistry, 2003, 51, 1427-1434.	5.2	99
85	Identification of the Structure and Origin of Thioacidolysis Marker Compounds for Cinnamyl Alcohol Dehydrogenase Deficiency in Angiosperms. Journal of Biological Chemistry, 2002, 277, 47412-47419.	3.4	80
86	Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochemistry, 2001, 57, 993-1003.	2.9	195
87	Cross-Coupling of Hydroxycinnamyl Aldehydes into Lignins. Organic Letters, 2000, 2, 2197-2200.	4.6	69
88	Arylpropane-1,3-diols in Lignins from Normal and CAD-Deficient Pines. Organic Letters, 1999, 1, 323-326.	4.6	36