
James D Bever

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11609487/publications.pdf Version: 2024-02-01

IAMES D REVED

#	Article	IF	CITATIONS
1	Manipulating plant microbiomes in the field: Native mycorrhizae advance plant succession and improve native plant restoration. Journal of Applied Ecology, 2022, 59, 1976-1985.	4.0	21
2	Perennial, but not annual legumes synergistically benefit from infection with arbuscular mycorrhizal fungi and rhizobia: a metaâ€analysis. New Phytologist, 2022, 233, 505-514.	7.3	27
3	Can Nucleation Bridge to Desirable Alternative Stable States? Theory and Applications. Bulletin of the Ecological Society of America, 2022, 103, e01953.	0.2	2
4	Microbial mediators of plant community response to longâ€ŧerm N and P fertilization: Evidence of a role of plant responsiveness to mycorrhizal fungi. Global Change Biology, 2022, 28, 2721-2735.	9.5	12
5	Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: an expanded database and improved pipeline. Mycorrhiza, 2022, 32, 145-153.	2.8	16
6	Plant-soil feedback as a driver of spatial structure in ecosystems. Physics of Life Reviews, 2022, 40, 6-14.	2.8	10
7	Preferential Allocation of Benefits and Resource Competition among Recipients Allows Coexistence of Symbionts within Hosts. American Naturalist, 2022, 199, 468-479.	2.1	1
8	Native mycorrhizal fungi improve milkweed growth, latex, and establishment while some commercial fungi may inhibit them. Ecosphere, 2022, 13, .	2.2	7
9	Evidence for the evolution of native plant response to mycorrhizal fungi in postâ€agricultural grasslands. Ecology and Evolution, 2022, 12, .	1.9	1
10	Celebrating INVAM: 35Âyears of the largest living culture collection of arbuscular mycorrhizal fungi. Mycorrhiza, 2021, 31, 117-126.	2.8	7
11	Soil microbial legacy drives crop diversity advantage: Linking ecological plant–soil feedback with agricultural intercropping. Journal of Applied Ecology, 2021, 58, 496-506.	4.0	50
12	Utility of large subunit for environmental sequencing of arbuscular mycorrhizal fungi: a new reference database and pipeline. New Phytologist, 2021, 229, 3048-3052.	7.3	20
13	Adaptation of plantâ€mycorrhizal interactions to moisture availability in prairie restoration. Restoration Ecology, 2021, 29, .	2.9	7
14	Root pathogen diversity and composition varies with climate in undisturbed grasslands, but less so in anthropogenically disturbed grasslands. ISME Journal, 2021, 15, 304-317.	9.8	26
15	Evidence of Adaptation of Little Bluestem to the Local Environment of Central Kansas. Transactions of the Kansas Academy of Science, 2021, 124, .	0.1	Ο
16	In-depth Phylogenomic Analysis of Arbuscular Mycorrhizal Fungi Based on a Comprehensive Set of de novo Genome Assemblies. Frontiers in Fungal Biology, 2021, 2, .	2.0	15
17	Mycorrhizal types influence island biogeography of plants. Communications Biology, 2021, 4, 1128.	4.4	12
18	Microbiome influence on host community dynamics: Conceptual integration of microbiome feedback with classical host–microbe theory. Ecology Letters, 2021, 24, 2796-2811.	6.4	22

#	Article	IF	CITATIONS
19	Enriched CO2 and Root-Associated Fungi (Mycorrhizae) Yield Inverse Effects on Plant Mass and Root Morphology in Six Asclepias Species. Plants, 2021, 10, 2474.	3.5	0
20	Biochar soil amendments in prairie restorations do not interfere with benefits from inoculation with native arbuscular mycorrhizal fungi. Restoration Ecology, 2020, 28, 785-795.	2.9	13
21	Pathogens and Mutualists as Joint Drivers of Host Species Coexistence and Turnover: Implications for Plant Competition and Succession. American Naturalist, 2020, 195, 591-602.	2.1	23
22	Effects of the soil microbiome on the demography of two annual prairie plants. Ecology and Evolution, 2020, 10, 6208-6222.	1.9	2
23	Connections and Feedback: Aquatic, Plant, and Soil Microbiomes in Heterogeneous and Changing Environments. BioScience, 2020, 70, 548-562.	4.9	11
24	Community context for mechanisms of disease dilution: insights from linking epidemiology and plant–soil feedback theory. Annals of the New York Academy of Sciences, 2020, 1469, 65-85.	3.8	16
25	Abiotic and biotic context dependency of perennial crop yield. PLoS ONE, 2020, 15, e0234546.	2.5	7
26	Native plant abundance, diversity, and richness increases in prairie restoration with field inoculation density of native mycorrhizal amendments. Restoration Ecology, 2020, 28, S373.	2.9	17
27	Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia, 2020, 192, 735-744.	2.0	25
28	A nucleation framework for transition between alternate states: short ircuiting barriers to ecosystem recovery. Ecology, 2020, 101, e03099.	3.2	18
29	Symbionts as Filters of Plant Colonization of Islands: Tests of Expected Patterns and Environmental Consequences in the Galapagos. Plants, 2020, 9, 74.	3.5	9
30	Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. Journal of Ecology, 2019, 107, 622-632.	4.0	71
31	Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology. Ecosphere, 2019, 10, e02799.	2.2	8
32	Benefits of Native Mycorrhizal Amendments to Perennial Agroecosystems Increases with Field Inoculation Density. Agronomy, 2019, 9, 353.	3.0	9
33	Sensitivity to <scp>AMF</scp> species is greater in lateâ€successional than earlyâ€successional native or nonnative grassland plants. Ecology, 2019, 100, e02855.	3.2	47
34	Climate Affects Plant-Soil Feedback of Native and Invasive Grasses: Negative Feedbacks in Stable but Not in Variable Environments. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	17
35	Effect of permafrost thaw on plant and soil fungal community in a boreal forest: Does fungal community change mediate plant productivity response?. Journal of Ecology, 2019, 107, 1737-1752.	4.0	34
36	Soil microbiome mediates positive plant diversityâ€productivity relationships in late successional grassland species. Ecology Letters, 2019, 22, 1221-1232.	6.4	54

#	Article	IF	CITATIONS
37	When and where plantâ€soil feedback may promote plant coexistence: a metaâ€analysis. Ecology Letters, 2019, 22, 1274-1284.	6.4	195
38	Plant-soil feedbacks promote coexistence and resilience in multi-species communities. PLoS ONE, 2019, 14, e0211572.	2.5	28
39	Are two strategies better than one? Manipulation of seed density and soil community in an experimental prairie restoration. Restoration Ecology, 2019, 27, 1021-1031.	2.9	12
40	Mycorrhizal fungi influence global plant biogeography. Nature Ecology and Evolution, 2019, 3, 424-429.	7.8	74
41	Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping. Journal of Plant Interactions, 2019, 14, 10-20.	2.1	14
42	Mycorrhizal composition influences plant anatomical defense and impacts herbivore growth and survival in a life-stage dependent manner. Pedobiologia, 2018, 66, 29-35.	1.2	17
43	Disturbance reduces the differentiation of mycorrhizal fungal communities in grasslands along a precipitation gradient. Ecological Applications, 2018, 28, 736-748.	3.8	45
44	Sowing density effects and patterns of colonization in a prairie restoration. Restoration Ecology, 2018, 26, 245-254.	2.9	10
45	The Plant Microbiome and Native Plant Restoration: The Example of Native Mycorrhizal Fungi. BioScience, 2018, 68, 996-1006.	4.9	107
46	Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza, 2018, 28, 587-603.	2.8	100
47	Ecology of Floristic Quality Assessment: testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness. AoB PLANTS, 2018, 10, plx073.	2.3	42
48	Frequency-dependent feedback constrains plant community coexistence. Nature Ecology and Evolution, 2018, 2, 1403-1407.	7.8	66
49	Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Communications Biology, 2018, 1, 116.	4.4	70
50	Carbon allocation and competition maintain variation in plant root mutualisms. Ecology and Evolution, 2018, 8, 5792-5800.	1.9	16
51	Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecology Letters, 2018, 21, 1268-1281.	6.4	197
52	Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant and Soil, 2017, 415, 1-12.	3.7	63
53	Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 2017, 214, 432-442.	7.3	173
54	Negative plantâ€phyllosphere feedbacks in native Asteraceae hosts – a novel extension of the plantâ€soil feedback framework. Ecology Letters, 2017, 20, 1064-1073.	6.4	50

#	Article	IF	CITATIONS
55	The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. Journal of Applied Ecology, 2017, 54, 1301-1309.	4.0	152
56	Evolutionary history shapes patterns of mutualistic benefit in Acacia –rhizobial interactions. Evolution; International Journal of Organic Evolution, 2016, 70, 1473-1485.	2.3	18
57	Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism. Ecosphere, 2016, 7, e01256.	2.2	94
58	<scp>AMF</scp> , phylogeny, and succession: specificity of response to mycorrhizal fungi increases for lateâ€successional plants. Ecosphere, 2016, 7, e01555.	2.2	56
59	Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evolutionary Biology, 2016, 16, 122.	3.2	148
60	Mycorrhizal composition can predict foliar pathogen colonization in soybean. Biological Control, 2016, 103, 46-53.	3.0	26
61	MycoDB, a global database of plant response to mycorrhizal fungi. Scientific Data, 2016, 3, 160028.	5.3	90
62	Host discrimination in modular mutualisms: a theoretical framework for meta-populations of mutualists and exploiters. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152428.	2.6	19
63	Phylogenetically Structured Differences in rRNA Gene Sequence Variation among Species of Arbuscular Mycorrhizal Fungi and Their Implications for Sequence Clustering. Applied and Environmental Microbiology, 2016, 82, 4921-4930.	3.1	31
64	Mitigating climate change through managing constructed-microbial communities in agriculture. Agriculture, Ecosystems and Environment, 2016, 216, 304-308.	5.3	56
65	Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere, 2015, 6, 1-16.	2.2	88
66	Crop diversification can contribute to disease risk control in sustainable biofuels production. Frontiers in Ecology and the Environment, 2015, 13, 561-567.	4.0	22
67	Spatial Heterogeneity in Soil Microbes Alters Outcomes of Plant Competition. PLoS ONE, 2015, 10, e0125788.	2.5	32
68	Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. New Phytologist, 2015, 205, 361-368.	7.3	86
69	Preferential allocation, physioâ€evolutionary feedbacks, and the stability and environmental patterns of mutualism between plants and their root symbionts. New Phytologist, 2015, 205, 1503-1514.	7.3	129
70	Mycorrhizal response trades off with plant growth rate and increases with plant successional status. Ecology, 2015, 96, 1768-1774.	3.2	105
71	Plantâ€soil feedbacks as drivers of succession: evidence from remnant and restored tallgrass prairies. Ecosphere, 2015, 6, 1-12.	2.2	106
72	Spatial soil heterogeneity has a greater effect on symbiotic arbuscular mycorrhizal fungal communities and plant growth than genetic modification with <i><scp>B</scp>acillus thuringiensis</i> toxin genes. Molecular Ecology, 2015, 24, 2580-2593.	3.9	30

James D Bever

#	Article	IF	CITATIONS
73	Maintenance of Plant Species Diversity by Pathogens. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 305-325.	8.3	320
74	Partner diversity and identity impacts on plant productivity in <i>Acacia</i> –rhizobial interactions. Journal of Ecology, 2015, 103, 130-142.	4.0	49
75	Joint Evolution of Kin Recognition and Cooperation in Spatially Structured Rhizobium Populations. PLoS ONE, 2014, 9, e95141.	2.5	9
76	Non-additive costs and interactions alter the competitive dynamics of co-occurring ecologically distinct plasmids. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132173.	2.6	30
77	Ecological dynamics and complex interactions of Agrobacterium megaplasmids. Frontiers in Plant Science, 2014, 5, 635.	3.6	36
78	Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists. Ecology and Evolution, 2014, 4, 3841-3850.	1.9	4
79	Coexistence and relative abundance in plant communities are determined by feedbacks when the scale of feedback and dispersal is local. Journal of Ecology, 2014, 102, 1195-1201.	4.0	53
80	The Coexistence of Hosts with Different Abilities to Discriminate against Cheater Partners: An Evolutionary Game-Theory Approach. American Naturalist, 2014, 183, 762-770.	2.1	40
81	Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2014, 95, 1045-1054.	3.2	144
82	Effect of Bacillus thuringiensis (Bt) maize cultivation history on arbuscular mycorrhizal fungal colonization, spore abundance and diversity, and plant growth. Agriculture, Ecosystems and Environment, 2014, 195, 29-35.	5.3	22
83	Microbial phylotype composition and diversity predicts plant productivity and plant–soil feedbacks. Ecology Letters, 2013, 16, 167-174.	6.4	79
84	Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101, 265-276.	4.0	1,259
85	Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the <scp>B</scp> olivian <scp>A</scp> ltiplano. Journal of Applied Ecology, 2013, 50, 1266-1273.	4.0	90
86	A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1691-1699.	2.6	56
87	Response to Comment on "Conspecific Negative Density Dependence and Forest Diversity― Science, 2012, 338, 469-469.	12.6	5
88	Conspecific Negative Density Dependence and Forest Diversity. Science, 2012, 336, 904-907.	12.6	345
89	Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi, and the productivity and structure of prairie grassland communities. Oecologia, 2012, 170, 1089-1098.	2.0	63
90	Nonâ€native plants and soil microbes: potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands. New Phytologist, 2012, 196, 212-222.	7.3	48

#	Article	IF	CITATIONS
91	Microbial Population and Community Dynamics on Plant Roots and Their Feedbacks on Plant Communities. Annual Review of Microbiology, 2012, 66, 265-283.	7.3	429
92	Inoculation with a Native Soil Community Advances Succession in a Grassland Restoration. Restoration Ecology, 2012, 20, 218-226.	2.9	148
93	RESOURCE AND COMPETITIVE DYNAMICS SHAPE THE BENEFITS OF PUBLIC GOODS COOPERATION IN A PLANT PATHOGEN. Evolution; International Journal of Organic Evolution, 2012, 66, 1953-1965.	2.3	24
94	REDUCED DROUGHT TOLERANCE DURING DOMESTICATION AND THE EVOLUTION OF WEEDINESS RESULTS FROM TOLERANCE-GROWTH TRADE-OFFS. Evolution; International Journal of Organic Evolution, 2012, 66, 3803-3814.	2.3	80
95	Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos, 2012, 121, 2090-2096.	2.7	67
96	Adaptation of Liquidambar styraciflua to coal tailings is mediated by arbuscular mycorrhizal fungi. Applied Soil Ecology, 2011, 48, 251-255.	4.3	14
97	A conceptual framework for the evolution of ecological specialisation. Ecology Letters, 2011, 14, 841-851.	6.4	267
98	Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 2011, 189, 366-370.	7.3	149
99	Specificity between Neotropical tree seedlings and their fungal mutualists leads to plant–soil feedback. Ecology, 2010, 91, 2594-2603.	3.2	92
100	<i>Glomus candidum</i> , a new species of arbuscular mycorrhizal fungi from North American grassland. Mycotaxon, 2010, 113, 101-109.	0.3	6
101	The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis, 2010, 51, 139-148.	2.3	137
102	Evolutionary change in agriculture: the past, present and future. Evolutionary Applications, 2010, 3, 405-408.	3.1	34
103	The Effect of Restoration Methods on the Quality of the Restoration and Resistance to Invasion by Exotics. Restoration Ecology, 2010, 18, 181-187.	2.9	72
104	Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 2010, 466, 752-755.	27.8	942
105	A metaâ€∎nalysis of contextâ€dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13, 394-407.	6.4	889
106	Advancing Synthetic Ecology: A Database System to Facilitate Complex Ecological Meta-Analyses. Bulletin of the Ecological Society of America, 2010, 91, 235-243.	0.2	13
107	Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 2010, 25, 468-478.	8.7	666
108	Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology, 2009, 90, 399-407.	3.2	240

James D Bever

#	Article	IF	CITATIONS
109	Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology, 2009, 90, 1055-1062.	3.2	152
110	Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia, 2009, 160, 771-779.	2.0	115
111	Trade-offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in Plantago lanceolata. Oecologia, 2009, 160, 807-816.	2.0	87
112	Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters, 2009, 12, 13-21.	6.4	407
113	Kin competition and the evolution of cooperation. Trends in Ecology and Evolution, 2009, 24, 370-377.	8.7	133
114	Mycorrhizal Symbioses and Plant Invasions. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 699-715.	8.3	388
115	Analogous effects of arbuscular mycorrhizal fungi in the laboratory and a North Carolina field. New Phytologist, 2008, 180, 162-175.	7.3	49
116	Rhizobial mediation of <i>Acacia</i> adaptation to soil salinity: evidence of underlying tradeâ€offs and tests of expected patterns. Journal of Ecology, 2008, 96, 746-755.	4.0	47
117	Genomic Organization and Mechanisms of Inheritance in Arbuscular Mycorrhizal Fungi: Contrasting the Evidence and Implications of Current Theories. , 2008, , 135-148.		9
118	MYCORRHIZAL SPECIES DIFFERENTIALLY ALTER PLANT GROWTH AND RESPONSE TO HERBIVORY. Ecology, 2007, 88, 210-218.	3.2	166
119	Coevolution of symbiotic mutualists and parasites in a community context. Trends in Ecology and Evolution, 2007, 22, 120-126.	8.7	345
120	DIRECT AND INTERACTIVE EFFECTS OF ENEMIES AND MUTUALISTS ON PLANT PERFORMANCE: A META-ANALYSIS. Ecology, 2007, 88, 1021-1029.	3.2	208
121	From Lilliput to Brobdingnag: Extending Models of Mycorrhizal Function across Scales. BioScience, 2006, 56, 889.	4.9	70
122	Biotic interactions and plant invasions. Ecology Letters, 2006, 9, 726-740.	6.4	649
123	Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist, 2006, 172, 554-562.	7.3	325
124	Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia, 2006, 147, 348-358.	2.0	58
125	Spatio-temporal community dynamics induced by frequency dependent interactions. Ecological Modelling, 2006, 197, 133-147.	2.5	27
126	Threeâ€Way Interactions among Mutualistic Mycorrhizal Fungi, Plants, and Plant Enemies: Hypotheses and Synthesis. American Naturalist, 2006, 167, 141-152.	2.1	157

#	Article	IF	CITATIONS
127	Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of oldâ€field perennials under low nitrogen supply in glasshouse culture. New Phytologist, 2005, 167, 869-880.	7.3	188
128	Arbuscular mycorrhizal fungi: Hyphal fusion and multigenomic structure. Nature, 2005, 433, E3-E4.	27.8	53
129	A New Kind of Ecology?. BioScience, 2004, 54, 440.	4.9	32
130	Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 2003, 157, 465-473.	7.3	718
131	GRASSROOTS ECOLOGY: PLANT–MICROBE–SOIL INTERACTIONS AS DRIVERS OF PLANT COMMUNITY STRUCTURE AND DYNAMICS. Ecology, 2003, 84, 2281-2291.	3.2	601
132	Dynamics within the Plant — Arbuscular Mycorrhizal Fungal Mutualism: Testing the Nature of Community Feedback. Ecological Studies, 2003, , 267-292.	1.2	8
133	Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. American Journal of Botany, 2002, 89, 1439-1446.	1.7	126
134	A novel theory to explain species diversity in landscapes: positive frequency dependence and habitat suitability. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2389-2393.	2.6	59
135	Negative feedback within a mutualism: host–specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2595-2601.	2.6	341
136	NEGATIVE FREQUENCY DEPENDENCE AND THE IMPORTANCE OF SPATIAL SCALE. Ecology, 2002, 83, 21-27.	3.2	51
137	LOCAL ADAPTATION IN THE LINUM MARGINALE?MELAMPSORA LINI HOST-PATHOGEN INTERACTION. Evolution; International Journal of Organic Evolution, 2002, 56, 1340-1351.	2.3	181
138	Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, 2002, 244, 281-290.	3.7	169
139	Host-specificity of AM fungal population growth rates can generate feedback on plant growth. , 2002, , 281-290.		21
140	Arbuscular Mycorrhizal Fungi: More Diverse than Meets the Eye, and the Ecological Tale of Why. BioScience, 2001, 51, 923.	4.9	308
141	MECHANISMS OF PLANT SPECIES COEXISTENCE: ROLES OF RHIZOSPHERE BACTERIA AND ROOT FUNGAL PATHOGENS. Ecology, 2001, 82, 3285-3294.	3.2	62
142	Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high― and lowâ€nutrient prairies. American Journal of Botany, 2001, 88, 1650-1656.	1.7	110
143	Coexistence under positive frequency dependence. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 273-277.	2.6	63
144	Mechanisms of Plant Species Coexistence: Roles of Rhizosphere Bacteria and Root Fungal Pathogens. Ecology, 2001, 82, 3285.	3.2	7

#	Article	IF	CITATIONS
145	Evolution of nitrogen fixation in spatially structured populations of Rhizobium. Heredity, 2000, 85, 366-372.	2.6	57
146	Acaulospora colossica sp. nov. from an old field in North Carolina and morphological comparisons with similar species, A. laevis and A. koskei. Mycologia, 1999, 91, 676-683.	1.9	18
147	Heritable variation and mechanisms of inheritance of spore shape within a population of Scutellospora pellucida , an arbuscular mycorrhizal fungus. American Journal of Botany, 1999, 86, 1209-1216.	1.7	51
148	Mycorrhizal status of the genus Carex (Cyperaceae). American Journal of Botany, 1999, 86, 547-553.	1.7	114
149	Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia, 1999, 119, 586-592.	2.0	92
150	Acaulospora colossica sp. nov. from an Old Field in North Carolina and Morphological Comparisons with Similar Species, A. laevis and A. koskei. Mycologia, 1999, 91, 676.	1.9	19
151	Evolutionary dynamics of rhizopine within spatially structured rhizobium populations. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1713-1719.	2.6	22
152	MAINTENANCE OF DIVERSITY WITHIN PLANT COMMUNITIES: SOIL PATHOGENS AS AGENTS OF NEGATIVE FEEDBACK. Ecology, 1998, 79, 1595-1601.	3.2	230
153	Sexual Transmission of Disease and Host Mating Systems: Within-Season Reproductive Success. American Naturalist, 1997, 149, 485-506.	2.1	101
154	Incorporating the Soil Community into Plant Population Dynamics: The Utility of the Feedback Approach. Journal of Ecology, 1997, 85, 561.	4.0	929
155	Taxonomy of Acaulospora gerdemannii and Clomus leptotichum, synanamorphs of an arbuscular mycorrhizal fungus in Glomales. Mycological Research, 1997, 101, 625-631.	2.5	32
156	Host-Dependent Sporulation and Species Diversity of Arbuscular Mycorrhizal Fungi in a Mown Grassland. Journal of Ecology, 1996, 84, 71.	4.0	472
157	Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Canadian Journal of Botany, 1995, 73, 25-32.	1.1	103
158	Feeback between Plants and Their Soil Communities in an Old Field Community. Ecology, 1994, 75, 1965-1977.	3.2	606