Subburaj Ilangumaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in the Current Understanding of How Low-Dose Radiation Affects the Cell Cycle. Cells, 2022, 11, 356.	4.1	16
2	The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 1964.	4.1	27
3	SILAC proteomics implicates SOCS1 in modulating cellular macromolecular complexes and the ubiquitin conjugating enzyme UBE2D involved in MET receptor tyrosine kinase downregulation. Biochimie, 2021, 182, 185-196.	2.6	2
4	The GIMAP Family Proteins: An Incomplete Puzzle. Frontiers in Immunology, 2021, 12, 679739.	4.8	27
5	NLRC5 Deficiency Deregulates Hepatic Inflammatory Response but Does Not Aggravate Carbon Tetrachloride-Induced Liver Fibrosis. Frontiers in Immunology, 2021, 12, 749646.	4.8	2
6	IL-15Rα-Independent IL-15 Signaling in Non-NK Cell-Derived IFNγ Driven Control of Listeria monocytogenes. Frontiers in Immunology, 2021, 12, 793918.	4.8	3
7	Interleukin-15 in autoimmunity. Cytokine, 2020, 136, 155258.	3.2	38
8	Prognostic significance of SOCS1 and SOCS3 tumor suppressors and oncogenic signaling pathway genes in hepatocellular carcinoma. BMC Cancer, 2020, 20, 774.	2.6	14
9	ADE and hyperinflammation in SARS-CoV2 infection- comparison with dengue hemorrhagic fever and feline infectious peritonitis. Cytokine, 2020, 136, 155256.	3.2	26
10	Essential role of suppressor of cytokine signaling 1 (SOCS1) in hepatocytes and macrophages in the regulation of liver fibrosis. Cytokine, 2019, 124, 154501.	3.2	22
11	NLRX1 inhibits the early stages of CNS inflammation and prevents the onset of spontaneous autoimmunity. PLoS Biology, 2019, 17, e3000451.	5.6	21
12	Hepatocyte growth control by SOCS1 and SOCS3. Cytokine, 2019, 121, 154733.	3.2	33
13	Phosphorylation of SOCS1 Inhibits the SOCS1–p53 Tumor Suppressor Axis. Cancer Research, 2019, 79, 3306-3319.	0.9	19
14	Editorial: Cytokines in liver diseases. Cytokine, 2019, 124, 154608.	3.2	1
15	Inflammatory Cytokine Profiles in Visceral and Subcutaneous Adipose Tissues of Obese Patients Undergoing Bariatric Surgery Reveal Lack of Correlation With Obesity or Diabetes. EBioMedicine, 2018, 30, 237-247.	6.1	49
16	Inflammation in human adipose tissues–Shades of gray, rather than white and brown. Cytokine and Growth Factor Reviews, 2018, 44, 28-37.	7.2	16
17	Trans-presentation of interleukin-15 by interleukin-15 receptor alpha is dispensable for the pathogenesis of autoimmune type 1 diabetes. Cellular and Molecular Immunology, 2017, 14, 590-596.	10.5	14
18	SOCS1: Regulator of T Cells in Autoimmunity and Cancer. Current Topics in Microbiology and Immunology, 2017, 410, 159-189.	1.1	18

SUBBURAJ ILANGUMARAN

#	Article	IF	CITATIONS
19	Bezlotoxumab for the prevention ofClostridium difficilerecurrence. Expert Opinion on Biological Therapy, 2017, 17, 1-7.	3.1	6
20	Expression of SOCS1 and the downstream targets of its putative tumor suppressor functions in prostate cancer. BMC Cancer, 2017, 17, 157.	2.6	17
21	USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation. Nature Immunology, 2017, 18, 54-63.	14.5	90
22	GTPase of the Immune-Associated Nucleotide Protein 5 Regulates the Lysosomal Calcium Compartment in T Lymphocytes. Frontiers in Immunology, 2017, 8, 94.	4.8	11
23	lleal antimicrobial peptide expression is dysregulated in old age. Immunity and Ageing, 2017, 14, 19.	4.2	22
24	SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes. Aging, 2017, 9, 2137-2162.	3.1	76
25	Attenuation of MET-mediated migration and invasion in hepatocellular carcinoma cells by SOCS1. World Journal of Gastroenterology, 2017, 23, 6639-6649.	3.3	19
26	NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8 ⁺ T lymphocytes. Oncolmmunology, 2016, 5, e1151593.	4.6	62
27	Interleukin-21-dependent modulation of T cell antigen receptor reactivity towards low affinity peptide ligands in autoreactive CD8+ T lymphocytes. Cytokine, 2016, 85, 83-91.	3.2	3
28	Negative regulation of the hepatic fibrogenic response by suppressor of cytokine signaling 1. Cytokine, 2016, 82, 58-69.	3.2	15
29	Editorial: Cytokines in inflammation, aging, cancer and obesity. Cytokine, 2016, 82, 1-3.	3.2	8
30	The hepatocyte growth factor (HGF)–MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions. Cytokine, 2016, 82, 125-139.	3.2	61
31	Interleukin-15-mediated inflammation promotes non-alcoholic fatty liver disease. Cytokine, 2016, 82, 102-111.	3.2	53
32	TCR and IL-7 Signaling Are Altered in the Absence of Functional GTPase of the Immune Associated Nucleotide Binding Protein 5 (GIMAP5). PLoS ONE, 2016, 11, e0151837.	2.5	11
33	Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues. PLoS ONE, 2016, 11, e0162995.	2.5	36
34	Tumour-promoting role of SOCS1 in colorectal cancer cells. Scientific Reports, 2015, 5, 14301.	3.3	28
35	The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2015, 12, 198.	7.2	40
36	GIMAP5 Deficiency Is Associated with Increased AKT Activity in T Lymphocytes. PLoS ONE, 2015, 10, e0139019.	2.5	8

Subburaj Ilangumaran

#	Article	IF	CITATIONS
37	IL-15 trans-presentation regulates homeostasis of CD4+ T lymphocytes. Cellular and Molecular Immunology, 2014, 11, 387-395.	10.5	31
38	Comparison of PCR-based diagnoses for visceral leishmaniasis in Bangladesh. Parasitology International, 2014, 63, 327-331.	1.3	9
39	Regulation of MET Receptor Signaling by SOCS1 and its Implications for Hepatocellular Carcinoma. Current Pharmaceutical Design, 2014, 20, 2922-2933.	1.9	10
40	SOCS1 Prevents Potentially Skin-Reactive Cytotoxic T Lymphocytes from Gaining the Ability to Cause Inflammatory Lesions. Journal of Investigative Dermatology, 2013, 133, 2013-2022.	0.7	9
41	GTPase of the immune-associated nucleotide-binding protein 5 (GIMAP5) regulates calcium influx in T-lymphocytes by promoting mitochondrial calcium accumulation. Biochemical Journal, 2013, 449, 353-364.	3.7	20
42	SOCS1 controls liver regeneration by regulating HGF signaling in hepatocytes. Journal of Hepatology, 2011, 55, 1300-1308.	3.7	50
43	Short Communication: Evaluation of a New Rapid Diagnostic Test for Quality Assurance by Kala Azar Elimination Programme in Bangladesh. Journal of Parasitology Research, 2011, 2011, 1-3.	1.2	4
44	Exposure to IL-15 and IL-21 Enables Autoreactive CD8 T Cells To Respond to Weak Antigens and Cause Disease in a Mouse Model of Autoimmune Diabetes. Journal of Immunology, 2011, 186, 5131-5141.	0.8	41
45	Increased generation of CD8 single positive cells in SOCS1-deficient thymus does not proportionately increase their export. Immunology Letters, 2010, 132, 12-17.	2.5	4
46	Increased antigen responsiveness of naive CD8 T cells exposed to ILâ€7 and ILâ€21 is associated with decreased CD5 expression. Immunology and Cell Biology, 2010, 88, 451-460.	2.3	29
47	Regulation of Cytokine-Driven Functional Differentiation of CD8 T Cells by Suppressor of Cytokine Signaling 1 Controls Autoimmunity and Preserves Their Proliferative Capacity toward Foreign Antigens. Journal of Immunology, 2010, 185, 357-366.	0.8	15
48	SOCS1, a novel interaction partner of p53 controlling oncogene-induced senescence. Aging, 2010, 2, 445-452.	3.1	54
49	SOCS1 Links Cytokine Signaling to p53 and Senescence. Molecular Cell, 2009, 36, 754-767.	9.7	128
50	Loss of GIMAP5 (GTPase of immunity-associated nucleotide binding protein 5) impairs calcium signaling in rat T lymphocytes. Molecular Immunology, 2009, 46, 1256-1259.	2.2	18
51	Cytokine Synergy in Antigen-Independent Activation and Priming of Naive CD8+ T Lymphocytes. Critical Reviews in Immunology, 2009, 29, 219-239.	0.5	27
52	Antigen-nonspecific activation of CD8+ T lymphocytes by cytokines: relevance to immunity, autoimmunity, and cancer. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 311-323.	2.3	30
53	IL-6, in Synergy with IL-7 or IL-15, Stimulates TCR-Independent Proliferation and Functional Differentiation of CD8+ T Lymphocytes. Journal of Immunology, 2008, 180, 7958-7968.	0.8	86
54	The 3BP2 Adapter Protein Is Required for Optimal B-Cell Activation and Thymus-Independent Type 2 Humoral Response. Molecular and Cellular Biology, 2007, 27, 3109-3122.	2.3	45

#	Article	IF	CITATIONS
55	Regulation of IL-21 signaling by suppressor of cytokine signaling-1 (SOCS1) in CD8+ T lymphocytes. Cellular Signalling, 2007, 19, 806-816.	3.6	47
56	Suppressor of Cytokine Signaling 1 Stringently Regulates Distinct Functions of IL-7 and IL-15 In Vivo during T Lymphocyte Development and Homeostasis. Journal of Immunology, 2006, 176, 4029-4041.	0.8	44
57	Regulation of the immune system by SOCS family adaptor proteins. Seminars in Immunology, 2004, 16, 351-365.	5.6	116
58	Flow cytometric analysis of cytokine receptor signal transduction. Journal of Immunological Methods, 2003, 278, 221-234.	1.4	15
59	Regulation of cytokine receptor signaling by SOCS1. Immunological Reviews, 2003, 192, 196-211.	6.0	58
60	Plasmodium falciparum merozoite surface protein 1. Glycosylation and localization to low-density, detergent-resistant membranes in the parasitized erythrocyte. FEBS Journal, 2003, 270, 366-375.	0.2	16
61	Suppressor of Cytokine Signaling 1 Regulates IL-15 Receptor Signaling in CD8+CD44high Memory T Lymphocytes. Journal of Immunology, 2003, 171, 2435-2445.	0.8	63
62	Autoinhibition of the Kit Receptor Tyrosine Kinase by the Cytosolic Juxtamembrane Region. Molecular and Cellular Biology, 2003, 23, 3067-3078.	2.3	151
63	Suppressor of Cytokine Signaling 1 Regulates an Endogenous Inhibitor of a Mast Cell Protease. Journal of Biological Chemistry, 2003, 278, 41871-41880.	3.4	9
64	Suppressor of cytokine signaling 1 attenuates IL-15 receptor signaling in CD8+ thymocytes. Blood, 2003, 102, 4115-4122.	1.4	41
65	A Positive Regulatory Role for Suppressor of Cytokine Signaling 1 in IFN-Î ³ -Induced MHC Class II Expression in Fibroblasts. Journal of Immunology, 2002, 169, 5010-5020.	0.8	25
66	The tumor suppressor activity of SOCS-1. Oncogene, 2002, 21, 4351-4362.	5.9	123
67	Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling platform. Glycoconjugate Journal, 2000, 17, 191-197.	2.7	83
68	Suppressor of Cytokine Signaling-1 Inhibits VAV Function through Protein Degradation. Journal of Biological Chemistry, 2000, 275, 14005-14008.	3.4	149
69	Signal Transduction via CD44: Role of Plasma Membrane Microdomains. Leukemia and Lymphoma, 1999, 35, 455-469.	1.3	69
70	Microdomain-dependent Regulation of Lck and Fyn Protein-Tyrosine Kinases in T Lymphocyte Plasma Membranes. Molecular Biology of the Cell, 1999, 10, 891-905.	2.1	119
71	Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochemical Journal, 1998, 335, 433-440.	3.7	429
72	Distinct interactions among GPI-anchored, transmembrane and membrane associated intracellular proteins, and sphingolipids in lymphocyte and endothelial cell plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1328, 227-236.	2.6	31

#	Article	IF	CITATIONS
73	Differential Regulation of Src-Family Protein Tyrosine Kinases in GPI Domains of T Lymphocyte Plasma Membranes. Biochemical and Biophysical Research Communications, 1996, 225, 801-807.	2.1	44
74	Transfer of exogenous glycosylphos-phatidylinositol (GPI)-linked molecules to plasma membranes. Trends in Cell Biology, 1996, 6, 163-167.	7.9	78
75	Evaluation by Dot-Immunoassay of the Differential Distribution of Cell Surface and Intracellular Proteins in Glycosylphosphatidylinositol-Rich Plasma Membrane Domains. Analytical Biochemistry, 1996, 235, 49-56.	2.4	28