Phillip M Trusty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11604035/publications.pdf

Version: 2024-02-01

623734 752698 22 427 14 20 citations g-index h-index papers 22 22 22 312 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The role of flow stasis in transcatheter aortic valve leaflet thrombosis. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, e105-e117.	0.8	23
2	Fontan Geometry and Hemodynamics Are Associated With Quality of Life in Adolescents and Young Adults. Annals of Thoracic Surgery, 2022, 114, 841-847.	1.3	6
3	Y-graft modification to the Fontan procedure: Increasingly balanced flow over time. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 652-661.	0.8	19
4	Cardiac Magnetic Resonance–Derived Metrics Are Predictive of Liver Fibrosis in Fontan Patients. Annals of Thoracic Surgery, 2020, 109, 1904-1911.	1.3	22
5	Impact of Free-Breathing Phase-Contrast MRI on Decision-Making in Fontan Surgical Planning. Journal of Cardiovascular Translational Research, 2020, 13, 640-647.	2.4	5
6	Cross-Sectional Magnetic Resonance and Modeling Comparison From Just After Fontan to the Teen Years. Annals of Thoracic Surgery, 2020, 109, 574-582.	1.3	5
7	Non-Newtonian Effects on Patient-Specific Modeling of Fontan Hemodynamics. Annals of Biomedical Engineering, 2020, 48, 2204-2217.	2.5	17
8	Computational modeling of a right-sided Fontan assist device: Effectiveness across patient anatomies and cannulations. Journal of Biomechanics, 2020, 109, 109917.	2.1	4
9	Target Flow-Pressure Operating Range for Designing a Failing Fontan Cavopulmonary Support Device. IEEE Transactions on Biomedical Engineering, 2020, 67, 2925-2933.	4.2	3
10	An inÂvitro analysis of the PediMag and CentriMag for right-sided failing Fontan support. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, 1413-1421.	0.8	14
11	Neosinus Flow Stasis Correlates With Thrombus Volume Post-TAVR. JACC: Cardiovascular Interventions, 2019, 12, 1288-1290.	2.9	18
12	Analysis of Inlet Velocity Profiles in Numerical Assessment of Fontan Hemodynamics. Annals of Biomedical Engineering, 2019, 47, 2258-2270.	2.5	24
13	The first cohort of prospective Fontan surgical planning patients with follow-up data: How accurate is surgical planning?. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 1146-1155.	0.8	34
14	In Vitro Examination of the VentriFlo True Pulse Pump for Failing Fontan Support. Artificial Organs, 2019, 43, 181-188.	1.9	9
15	The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning. Journal of Biomechanics, 2019, 82, 87-95.	2.1	13
16	Impact of hemodynamics and fluid energetics on liver fibrosis after Fontan operation. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 267-275.	0.8	41
17	Fontan Surgical Planning: Previous Accomplishments, Current Challenges, and Future Directions. Journal of Cardiovascular Translational Research, 2018, 11, 133-144.	2.4	46
18	Using a Novel In Vitro Fontan Model and Condition-Specific Real-Time MRI Data to Examine Hemodynamic Effects of Respiration and Exercise. Annals of Biomedical Engineering, 2018, 46, 135-147.	2.5	16

#	Article	IF	CITATIONS
19	The Advantages of Viscous Dissipation Rate over Simplified Power Loss as a Fontan Hemodynamic Metric. Annals of Biomedical Engineering, 2018, 46, 404-416.	2.5	32
20	Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning?. Journal of Biomechanics, 2017, 50, 172-179.	2.1	29
21	Local Hemodynamic Differences Between Commercially Available Y-Grafts and Traditional Fontan Baffles Under Simulated Exercise Conditions: Implications for Exercise Tolerance. Cardiovascular Engineering and Technology, 2017, 8, 390-399.	1.6	14
22	A pulsatile hemodynamic evaluation of the commercially available bifurcated Y-graft Fontan modification and comparison with the lateral tunnel and extracardiac conduits. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 1529-1536.	0.8	33