Daniela Lanari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11603171/publications.pdf

Version: 2024-02-01

70 papers 2,655 citations

147801 31 h-index 189892 50 g-index

94 all docs 94 docs citations 94 times ranked 3137 citing authors

#	Article	IF	CITATIONS
1	Flow approaches towards sustainability. Green Chemistry, 2014, 16, 3680-3704.	9.0	213
2	Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. Energy and Environmental Science, 2012, 5, 8457.	30.8	197
3	A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions. Green Chemistry, 2015, 17, 365-372.	9.0	120
4	Current methodologies for a sustainable approach to π-conjugated organic semiconductors. Energy and Environmental Science, 2016, 9, 763-786.	30.8	112
5	Ringâ€Opening of Epoxides in Water. European Journal of Organic Chemistry, 2011, 2011, 2587-2598.	2.4	109
6	Click-chemistry approaches to π-conjugated polymers for organic electronics applications. Chemical Science, 2016, 7, 6298-6308.	7.4	104
7	Sc(III)-Catalyzed Enantioselective Addition of Thiols to \hat{l}_{\pm},\hat{l}^2 -Unsaturated Ketones in Neutral Water. Organic Letters, 2011, 13, 2150-2152.	4.6	76
8	Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production. Progress in Energy and Combustion Science, 2018, 65, 136-162.	31.2	63
9	A continuous flow approach for the Câ \in "H functionalization of 1,2,3-triazoles in \hat{I}^3 -valerolactone as a biomass-derived medium. Green Chemistry, 2018, 20, 2888-2893.	9.0	63
10	Supported I-proline on zirconium phosphates methyl and/or phenyl phosphonates as heterogeneous organocatalysts for direct asymmetric aldol addition. Journal of Catalysis, 2011, 282, 112-119.	6.2	60
11	An E-factor minimized protocol for the preparation of methyl \hat{l}^2 -hydroxy esters. Green Chemistry, 2010, 12, 1301.	9.0	58
12	Sustainable flow approaches to active pharmaceutical ingredients. Green Chemistry, 2020, 22, 5937-5955.	9.0	56
13	Self-Assembly with Block Copolymers through Metal Coordination of SCS–PdII Pincer Complexes and Pseudorotaxane Formation. Chemistry - A European Journal, 2006, 12, 3789-3797.	3.3	50
14	2â€ <i>tert</i> àêButyliminoâ€2â€diethylaminoâ€1,3â€dimethylperhydroâ€1,3,2―diazaphosphorine Supported of Polystyrene (PSâ€BEMP) as an Efficient Recoverable and Reusable Catalyst for the Phenolysis of Epoxides under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2010, 352, 2489-2496.	on 4.3	50
15	E-factor minimized protocols for the polystyryl-BEMP catalyzed conjugate additions of various nucleophiles to $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl compounds. Green Chemistry, 2012, 14, 164-169.	9.0	50
16	Template-Directed Olefin Cross Metathesis. Organic Letters, 2005, 7, 4213-4216.	4.6	48
17	Template-Directed One-Step Synthesis of Cyclic Trimers by ADMET. Journal of the American Chemical Society, 2006, 128, 15358-15359.	13.7	47
18	Noncovalent Side-Chain Functionalization of Terpolymers. Macromolecules, 2006, 39, 3738-3744.	4.8	46

#	Article	IF	Citations
19	Efficient synthesis of cyanohydrin trimethylsilyl ethers via 1,2-chemoselective cyanosilylation of carbonyls. Green Chemistry, 2013, 15, 199-204.	9.0	46
20	Towards Sustainable Câ^H Functionalization Reactions: The Emerging Role of Bioâ€Based Reaction Media. Chemistry - A European Journal, 2018, 24, 13383-13390.	3.3	42
21	Waste minimized synthesis of pharmaceutically active compounds <i>via</i> heterogeneous manganese catalysed C–H oxidation in flow. Green Chemistry, 2020, 22, 397-403.	9.0	40
22	Amberlite IRA900F as a Solid Fluoride Source for a Variety of Organic Transformations under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2008, 2008, 3928-3932.	2.4	39
23	Continuous flow/waste-minimized synthesis of benzoxazoles catalysed by heterogeneous manganese systems. Green Chemistry, 2019, 21, 5298-5305.	9.0	38
24	Green solvents for organic thin-film transistor processing. Journal of Materials Chemistry C, 2020, 8, 5786-5794.	5.5	38
25	Quantitative Sustainability Assessment of Flow Chemistry–From Simple Metrics to Holistic Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 9508-9540.	6.7	38
26	Preparation and Use of Polystyrylâ€DABCOF ₂ : An Efficient Recoverable and Reusable Catalyst for βâ€Azidation of Ĩ±,βâ€Unsaturated Ketones in Water. Advanced Synthesis and Catalysis, 2012, 354, 908-916.	4.3	37
27	Waste-minimised copper-catalysed azide–alkyne cycloaddition in Polarclean as a reusable and safe reaction medium. Green Chemistry, 2018, 20, 183-187.	9.0	37
28	New zirconium hydrogen phosphate alkyl and/or aryl phosphonates with high surface area as heterogeneous BrÃ,nsted acid catalysts for aza-Diels–Alder reaction in aqueous medium. Journal of Catalysis, 2011, 277, 80-87.	6.2	35
29	A Protocol for Accessing the \hat{I}^2 -Azidation of $\hat{I}\pm,\hat{I}^2$ -Unsaturated Carboxylic Acids. Organic Letters, 2012, 14, 4610-4613.	4.6	33
30	Rasta resin as support for TBD in base-catalyzed organic processes. Journal of Catalysis, 2012, 285, 216-222.	6.2	33
31	A New Oneâ€Pot Synthesis of Polysubstituted Indoles from Pyrroles and βâ€Nitroacrylates. Advanced Synthesis and Catalysis, 2011, 353, 1425-1428.	4.3	32
32	Diastereoselective Threeâ€Step Route to <i>>o</i> â€(6â€Nitrocyclohexâ€3â€enâ€1â€yl)phenol and Tetrahydroâ€6 <i>H</i> â€benzo[<i>c</i>]chromenâ€6â€ol Derivatives from Salicylaldehydes. European Journal of Organic Chemistry, 2011, 2011, 2874-2884.	2.4	32
33	Synthesis and characterization of novel polystyrene-supported TBD catalysts and their use in the Michael addition for the synthesis of Warfarin and its analogues. Journal of Catalysis, 2014, 309, 260-267.	6.2	31
34	Aquivion PFSA as a Novel Solid and Reusable Acid Catalyst in the Synthesis of 2-Pyrrolidin-2-ones in Flow. ACS Sustainable Chemistry and Engineering, 2015, 3, 1873-1880.	6.7	31
35	Definition of green synthetic tools based on safer reaction media, heterogeneous catalysis, and flow technology. Pure and Applied Chemistry, 2018, 90, 21-33.	1.9	30
36	A catalytic approach to the base-promoted reaction of epoxides with activated methylenes. Tetrahedron Letters, 2010, 51, 1566-1569.	1.4	29

#	Article	IF	CITATIONS
37	Continuousâ€Flow Palladiumâ€Catalyzed Synthesis of Cyclohexanones from Phenols using Sodium Formate as a Safe Hydrogen Source. ChemCatChem, 2018, 10, 1277-1281.	3.7	29
38	C2â€"H Arylation of Indoles Catalyzed by Palladiumâ€Containing Metalâ€Organicâ€Framework in γâ€Valerolactone. ChemSusChem, 2020, 13, 2786-2791.	6.8	29
39	Avoiding hot-spots in Microwave-assisted Pd/C catalysed reactions by using the biomass derived solvent l ³ -Valerolactone. Scientific Reports, 2018, 8, 10571.	3.3	28
40	A waste-minimized protocol for the preparation of 1,2-azido alcohols and 1,2-amino alcohols. Green Chemistry, 2013, 15, 2394.	9.0	27
41	Synthesis of polymeric semiconductors by a surface-initiated approach. RSC Advances, 2013, 3, 23909.	3.6	26
42	Synthesis of $\hat{l}^2\hat{a}\in\mathbb{C}$ yano Ketones Promoted by a Heterogeneous Fluoride Catalyst. Advanced Synthesis and Catalysis, 2016, 358, 2134-2139.	4.3	25
43	A Catalytic Peterson-like Synthesis of Alkenyl Nitriles. Organic Letters, 2016, 18, 2680-2683.	4.6	25
44	JandaJel as a polymeric support to improve the catalytic efficiency of immobilized-1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) under solvent-free conditions. Green Chemistry, 2011, 13, 3181.	9.0	24
45	E-Factor minimized hydrophosphonylation of aldehydes catalyzed by polystyryl-BEMP under solvent-free conditions. Organic and Biomolecular Chemistry, 2013, 11, 5042.	2.8	24
46	Heterogeneous Bisoxazoline/Copper Complex: A Green Catalyst for the Enantioselective Reaction of Nitromethane with Substituted Benzaldehydes. European Journal of Organic Chemistry, 2011, 2011, 5551-5554.	2.4	23
47	Heterogeneous Manganeseâ€Catalyzed Oxidase Câ^'H/Câ^'O Cyclization to Access Pharmaceutically Active Compounds. ChemCatChem, 2020, 12, 449-454.	3.7	23
48	PS-BEMP as a basic catalyst for the phospha-Michael addition to electron-poor alkenes. Organic and Biomolecular Chemistry, 2016, 14, 3521-3525.	2.8	20
49	Synthesis of enantiopure angularly condensed [2.2]paracyclophanes containing five-membered rings. Tetrahedron: Asymmetry, 2003, 14, 481-487.	1.8	17
50	A solvent-free protocol for the synthesis of 3-formyl-2H-chromenes via domino oxa Michael/aldol reaction. Tetrahedron Letters, 2014, 55, 1752-1755.	1.4	17
51	Waste Minimized Multistep Preparation in Flow of \hat{l}^2 -Amino Acids Starting from \hat{l}^{\pm} , \hat{l}^2 -Unsaturated Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2015, 3, 1221-1226.	6.7	16
52	Synthesis of some new enantiopure [2.2]paracyclophanes bearing polycyclic aromatic subunits. Tetrahedron: Asymmetry, 2002, 13, 1331-1335.	1.8	15
53	Synthesis of enantiopure helical cyclophanes containing five-membered heterocyclic rings. Tetrahedron: Asymmetry, 2003, 14, 2775-2779.	1.8	13
54	A stereoselective organic base-catalyzed protocol for hydroamination of alkynes under solvent-free conditions. Molecular Catalysis, 2018, 455, 188-191.	2.0	13

#	Article	IF	CITATIONS
55	\hat{l}^2 -Nitroacrylates as key starting materials for the one-pot synthesis of densely functionalized penta-substituted anilines. Tetrahedron, 2012, 68, 8231-8235.	1.9	12
56	Waste-Minimized Cyanosilylation of Carbonyls Using Fluoride on Polymeric Ionic Tags in Batch and under Continuous Flow Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 5740-5749.	6.7	11
57	Reactions of (S)-(+)-4-ethenyl[2.2]paracyclophane with heterocyclic quinones. Tetrahedron: Asymmetry, 2003, 14, 2387-2392.	1.8	10
58	Synthesis of helical [2.2]paracyclophanes containing carbocyclic and heterocyclic five-membered rings. Tetrahedron, 2004, 60, 11759-11764.	1.9	10
59	Zirconium potassium phosphate methyl and/or phenyl phosphonates as heterogeneous catalysts for Knoevenagel condensation under solvent free conditions. Microporous and Mesoporous Materials, 2018, 268, 251-259.	4.4	10
60	Multistep Flow Procedure for the Waste-Minimized Preparation of <i>N</i> -Boc-ß-Amino Ketones. Journal of Flow Chemistry, 2015, 4, 40-43.	1.9	9
61	Synthesis and Evaluation of Antileishmanial and Cytotoxic Activity of Benzothiopyrane Derivatives. Molecules, 2020, 25, 800.	3.8	8
62	Unexpected chlorination of angularly annelated [2.2] paracyclophanes during DDQ oxidation. Tetrahedron Letters, 2005, 46, 949-950.	1.4	7
63	Copper(II) Triflate-Sodium Dodecyl Sulfate Catalyzed Preparation of 1,2-Diphenyl-2,3-dihydro-4-pyridones in Aqueous Acidic Medium. Synthesis, 2012, 44, 2181-2184.	2.3	6
64	A new sustainable protocol for the synthesis of nitroaldol derivatives via Henry reaction under solvent-free conditions. Green Chemistry Letters and Reviews, 2014, 7, 11-17.	4.7	5
65	Recent Applications of Solid-Supported Ammonium Fluorides in Organic Synthesis. Synthesis, 2017, 49, 973-980.	2.3	4
66	Flow Synthesis of Biologically-Relevant Compound Libraries. Molecules, 2020, 25, 909.	3.8	3
67	Study on the Influence of a Sustainable Medium for the Design of Multistep Processes: Three-Component Synthesis of 2-Nitroamines. Synlett, 2013, 24, 2596-2600.	1.8	2
68	Green solvents for organic electronics processing. , 2022, , 425-462.		1
69	Semiconducting Arylacetylene:Insulating Polymer Blends for Organic-Based Electronic Devices. Materials Research Society Symposia Proceedings, 2012, 1402, 94.	0.1	0
70	Synthesis of Bioactive Heterocyclic Systems Promoted by Silica-Supported Catalysts., 2014, , 1-48.		0