
Fang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11603128/publications.pdf Version: 2024-02-01

FANC CHEN

#	Article	IF	CITATIONS
1	Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 2009, 4, 505-509.	31.5	1,459
2	Effect of Anchoring Groups on Single-Molecule Conductance:Â Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules. Journal of the American Chemical Society, 2006, 128, 15874-15881.	13.7	701
3	Measurement of Single-Molecule Conductance. Annual Review of Physical Chemistry, 2007, 58, 535-564.	10.8	374
4	Dielectric Screening Enhanced Performance in Graphene FET. Nano Letters, 2009, 9, 2571-2574.	9.1	253
5	Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution. Journal of the American Chemical Society, 2009, 131, 9908-9909.	13.7	238
6	Graphene Layersâ€Wrapped Fe/Fe ₅ C ₂ Nanoparticles Supported on Nâ€doped Graphene Nanosheets for Highly Efficient Oxygen Reduction. Advanced Energy Materials, 2018, 8, 1702476.	19.5	205
7	lonic Screening of Charged-Impurity Scattering in Graphene. Nano Letters, 2009, 9, 1621-1625.	9.1	144
8	Thermally Activated Electron Transport in Single Redox Molecules. Journal of the American Chemical Society, 2007, 129, 11535-11542.	13.7	131
9	Graphene Fieldâ€Effect Transistors: Electrochemical Gating, Interfacial Capacitance, and Biosensing Applications. Chemistry - an Asian Journal, 2010, 5, 2144-2153.	3.3	64
10	Electrochemical approach for fabricating nanogap electrodes with well controllable separation. Applied Physics Letters, 2005, 86, 123105.	3.3	48
11	Finely Tuning Metallic Nanogap Size with Electrodeposition by Utilizing High-Frequency Impedance in Feedback. Angewandte Chemie - International Edition, 2005, 44, 7771-7775.	13.8	31
12	The transport and quantum capacitance properties of epitaxial graphene. Applied Physics Letters, 2010, 96, 162101.	3.3	28
13	Forming single molecular junctions between indium tin oxide electrodes. Applied Physics Letters, 2007, 91, 162106.	3.3	22
14	Redoxâ€Active Catecholâ€Functionalized Molecular Rods: Suitable Protection Groups and Singleâ€Molecule Transport Investigations. European Journal of Organic Chemistry, 2008, 2008, 136-149.	2.4	21
15	Unique Metal Cation Recognition via Crown Ether-Derivatized Oligo(phenyleneethynylene) Molecular Junction. Journal of Physical Chemistry C, 2020, 124, 8496-8503.	3.1	20
16	Influence of Molecular Structure on Contact Interaction between Thiophene Anchoring Group and Au Electrode. Journal of Physical Chemistry C, 2017, 121, 1472-1476.	3.1	19
17	Facile preparation of ternary Ag2CO3/Ag/PANI composite nanorods with enhanced photoactivity and stability. Journal of Materials Science, 2017, 52, 4521-4531.	3.7	16
18	Constructing Dual-Molecule Junctions to Probe Intermolecular Crosstalk. ACS Applied Materials & Interfaces, 2020, 12, 30584-30590.	8.0	7

FANG CHEN

# 4	Article	IF	CITATIONS
	The binding sites of carboxylic acid group contacting to Cu electrode. Electrochemistry Communications, 2015, 59, 48-51.	4.7	6
20 (Comparative Study on Single-Molecule Junctions of Alkane- and Benzene-Based Molecules with Carboxylic Acid/Aldehyde as the Anchoring Groups. Nanoscale Research Letters, 2016, 11, 380.	5.7	6
	Formation of nanogaps by nanoscale Cu electrodeposition and dissolution. Electrochimica Acta, 2007, 52, 4210-4214.	5.2	5
22 e	One-step electrochemical exfoliation-deposition of MnO2 anchoring on graphite nanosheets as an effective host material for high-performance sulfur cathode. Ionics, 2020, 26, 5279-5286.	2.4	5
23 E	Electrochemical Fabrication of Metal Nanocontacts and Nanogaps. , 0, , 167-194.		2