
Robert A Evarestov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1160189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antiferromagnetism-induced spin splitting in monolayers of layered and non-layered crystals: Symmetry-based analysis and Density Functional Theory calculation. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 139, 115118.	2.7	4
2	Spin Splitting in Systems Described by Magnetic Rod Groups. Journal of Physical Chemistry C, 2022, 126, 5362-5367.	3.1	3
3	Spin splitting in monoperiodic systems described by magnetic line groups. Journal of Physics Condensed Matter, 2022, 34, 315803.	1.8	2
4	Lattice Dynamics and Thermodynamic Properties of Bulk Phases and Monolayers of GaTe and InTe: A Comparison from Firstâ€Principles Calculations. European Journal of Inorganic Chemistry, 2021, 2021, 126-138.	2.0	9
5	Argentophillic interactions in argentum chalcogenides: First principles calculations and topological analysis of electron density. Journal of Computational Chemistry, 2021, 42, 242-247.	3.3	7
6	Colossal Spin Splitting in the Monolayer of the Collinear Antiferromagnet MnF ₂ . Journal of Physical Chemistry Letters, 2021, 12, 2363-2369.	4.6	17
7	The Nature of Chemical Bonds in the Tetragonal Polymorph of InTe: Firstâ€Principlesâ€Based Topological Analysis. Physica Status Solidi (B): Basic Research, 2021, 258, 2100072.	1.5	2
8	Antiferromagnetism-Induced Spin Splitting in Systems Described by Magnetic Layer Groups. Journal of Physical Chemistry C, 2021, 125, 16147-16154.	3.1	11
9	Structure and stability of GaS, GaTe, and Janus-Ga2STe multi-walled nanotubes. Molecular mechanics simulation. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 133, 114779.	2.7	4
10	Firstâ€Principles Calculations of Phonons and Thermodynamic Properties of Zr(Hf)S ₂ â€Based Nanotubes. Journal of Computational Chemistry, 2020, 41, 759-768.	3.3	5
11	Topological analysis of chemical bonding in the layered <scp>FePSe₃</scp> upon pressureâ€induced phase transitions. Journal of Computational Chemistry, 2020, 41, 2610-2623.	3.3	4
12	Multi-walled MoS2 nanotubes. First principles and molecular mechanics computer simulation. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114183.	2.7	9
13	Functionalized Pt(II) and Ir(III) NIR Emitters and Their Covalent Conjugates with Polymer-Based Nanocarriers. Bioconjugate Chemistry, 2020, 31, 1327-1343.	3.6	22
14	Nonempirical Calculations of the Structure and Stability of Nanotubes Based on Gallium Monochalcogenides. Physics of the Solid State, 2020, 62, 1017-1023.	0.6	5
15	Origin of pressureâ€induced insulatorâ€toâ€metal transition in the van der Waals compound FePS ₃ from firstâ€principles calculations. Journal of Computational Chemistry, 2020, 41, 1337-1344.	3.3	23
16	First-principles comparative study of perfect and defective CsPbX ₃ (X = Br, I) crystals. Physical Chemistry Chemical Physics, 2020, 22, 3914-3920.	2.8	37
17	Parameterization of dilute Ising model for iron-containing lanthanum gallate and aluminate solid solutions based on first-principles calculations. Solid State Ionics, 2020, 348, 115283.	2.7	0
18	Luminescent organic dyes containing a phenanthro[9,10- <i>D</i>]imidazole core and [Ir(N^C)(N^N)] ⁺ complexes based on the cyclometalating and diimine ligands of this type. Dalton Transactions, 2020, 49, 6751-6763.	3.3	19

#	Article	IF	CITATIONS
19	Binary Oxides of Transition Metals: ZnO, TiO\$\$_2\$\$, ZrO\$\$_2\$\$, HfO\$\$_2\$\$. Nanoscience and Technology, 2020, , 255-451.	1.5	0
20	First-Principles Simulations of Bulk Crystal and Nanolayer Properties. Nanoscience and Technology, 2020, , 123-219.	1.5	0
21	Ternary Oxides. Nanoscience and Technology, 2020, , 519-629.	1.5	0
22	Binary Oxides of Transition Metals: V\$\$_2\$\$O\$\$_5\$\$. Nanoscience and Technology, 2020, , 453-518.	1.5	0
23	Simulations of Nanotube Properties. Nanoscience and Technology, 2020, , 221-252.	1.5	0
24	Chalcogenides. Nanoscience and Technology, 2020, , 631-833.	1.5	0
25	The Symmetry Groups in Three-Dimensional Space. Nanoscience and Technology, 2020, , 9-121.	1.5	Ο
26	Ab Initio Calculations on the Electronic Structure and Photocatalytic Properties of Twoâ€Dimensional WS ₂ (0001) Nanolayers of Varying Thickness. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800253.	2.4	16
27	A Rare Type of Rhenium(I) Diimine Complexes with Unsupported Coordinated Phosphine Oxide Ligands: Synthesis, Structural Characterization, Photophysical and Theoretical Study. European Journal of Inorganic Chemistry, 2019, 2019, 4350-4357.	2.0	12
28	Near-Infrared [Ir(N ^{â^§} C) ₂ (N ^{â^§} N)] ⁺ Emitters and Their Noncovalent Adducts with Human Serum Albumin: Synthesis and Photophysical and Computational Study. Organometallics, 2019, 38, 3740-3751.	2.3	20
29	First-Principles Evaluation of the Morphology of WS ₂ Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts. ACS Omega, 2019, 4, 1434-1442.	3.5	27
30	Development of the Local (Site) Symmetry Method in the Supercell Model for a Crystal with an Impurity. Physics of the Solid State, 2019, 61, 994-1006.	0.6	0
31	First-principles calculations of iodine-related point defects in CsPbl ₃ . Physical Chemistry Chemical Physics, 2019, 21, 7841-7846.	2.8	29
32	First principles evaluation on photocatalytic suitability of 2H structured and [0001] oriented WS2 nanosheets and nanotubes. IOP Conference Series: Materials Science and Engineering, 2019, 503, 012002.	0.6	4
33	The site-symmetry induced representations of layer groups on the Bilbao Crystallographic Server. Journal of Applied Crystallography, 2019, 52, 1214-1221.	4.5	10
34	Supercell-zone folding transformation for bulk crystals and nanotubes. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	6
35	Site symmetry approach applied to the supercell model of MgAl2O4 spinel with oxygen interstitials: Ab initio calculations. Computational Materials Science, 2018, 150, 517-523.	3.0	11
36	Calculation of Young's Modulus of MoS2-Based Single-Wall Nanotubes Using Force-Field and Hybrid Density Functional Theory. Physics of the Solid State, 2018, 60, 2551-2558.	0.6	4

#	Article	IF	CITATIONS
37	Ab initio (DFT) calculations of corundum (α-Al2O3) oxygen isotope fractionation. European Journal of Mineralogy, 2018, 30, 1063-1070.	1.3	3
38	Binuclear platinum(II) complexes based on a new bis-bidentate 3,6-di(thien-2-yl)pyridazine skeleton, a novel type of deep-red phosphorescent emitters: Synthesis and nonempirical calculations. Inorganic Chemistry Communication, 2018, 98, 105-110.	3.9	3
39	Infrared and Raman active vibrational modes in MoS 2 â€based nanotubes: Symmetry analysis and firstâ€principles calculations. Journal of Computational Chemistry, 2018, 39, 2163-2172.	3.3	8
40	Temperature dependence of thermodynamic properties of MoS2 monolayer and single-wall nanotubes: Application of the developed three-body force field. Journal of Molecular Graphics and Modelling, 2018, 85, 212-222.	2.4	4
41	Comparison of vibrational and thermodynamic properties of MoS ₂ and WS ₂ nanotubes: first principles study. Materials Research Express, 2018, 5, 115028.	1.6	10
42	First-principles calculations of CdS-based nanolayers and nanotubes. Materials Research Express, 2018, 5, 055036.	1.6	5
43	Use of site symmetry in supercell models of defective crystals: polarons in CeO ₂ . Physical Chemistry Chemical Physics, 2017, 19, 8340-8348.	2.8	20
44	Use of Wyckoff position splittings in the supercell model of crystals with point defects. Journal of Applied Crystallography, 2017, 50, 893-900.	4.5	8
45	Firstâ€principles modeling of hafniaâ€based nanotubes. Journal of Computational Chemistry, 2017, 38, 2088-2099.	3.3	7
46	Atom–atom force field for simulation of zirconia bulk, nanosheets and nanotubes. Molecular Simulation, 2017, 43, 886-899.	2.0	7
47	Doped 1D Nanostructures of Transitionâ€metal Oxides: Firstâ€principles Evaluation of Photocatalytic Suitability. Israel Journal of Chemistry, 2017, 57, 461-476.	2.3	15
48	Phonon spectra, electronic, and thermodynamic properties of WS ₂ nanotubes. Journal of Computational Chemistry, 2017, 38, 2581-2593.	3.3	24
49	Water adsorption on α-V2O5 surface and absorption in V2O5â^™nH2O xerogel: DFT study of electronic structure. Surface Science, 2017, 666, 76-83.	1.9	4
50	First-principles calculations of oxygen interstitials in corundum: a site symmetry approach. Physical Chemistry Chemical Physics, 2017, 19, 25245-25251.	2.8	19
51	First-principles calculations on Fe-Pt nanoclusters of various morphologies. Scientific Reports, 2017, 7, 10579.	3.3	2
52	Site symmetry approach in the supercell model of carbon-doped ZnO bulk. Chemical Physics Letters, 2017, 682, 91-95.	2.6	6
53	Simulation of Young's moduli for hexagonal ZnO [0 0 0 1]-oriented nanowires: first principles ar molecular mechanical calculations. Materials Research Express, 2017, 4, 085014.	nd 1.6	10
54	Firstâ€principles Calculations of InSâ€based Nanotubes. Israel Journal of Chemistry, 2017, 57, 490-500.	2.3	5

#	Article	IF	CITATIONS
55	Temperature dependence of strain energy and thermodynamic properties of V ₂ O ₅ â€based singleâ€walled nanotubes: Zoneâ€folding approach. Journal of Computational Chemistry, 2016, 37, 1442-1450.	3.3	8
56	Synchrotron-based far-infrared spectroscopy of nickel tungstate. Low Temperature Physics, 2016, 42, 552-555.	0.6	5
57	New insight on cubic–tetragonal–monoclinic phase transitions in ZrO ₂ : <i>ab initio</i> study and symmetry analysis. Journal of Applied Crystallography, 2016, 49, 1572-1578.	4.5	10
58	Nanolayered solid electrolyte (GeSe2)30(Sb2Se3)30(AgI)40/AgI: A new hypothesis for the conductivity mechanism in layered AgI. Solid State Ionics, 2016, 294, 82-89.	2.7	9
59	Simulation of structure and stability of carbon nanoribbons. Russian Journal of General Chemistry, 2016, 86, 1777-1786.	0.8	2
60	Quantum chemical simulations of doped ZnO nanowires for photocatalytic hydrogen generation. Physica Status Solidi (B): Basic Research, 2016, 253, 2120-2128.	1.5	16
61	Interpretation of unexpected behavior of infrared absorption spectra of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi> ScF </mml:mi> <mml:mn> 3 the quasiharmonic approximation. Physical Review B, 2016, 93, .</mml:mn></mml:msub></mml:math 	า ก 3.2/mml:	:mstub>
62	Application of zoneâ€folding approach to the firstâ€principles estimation of thermodynamic properties of carbon and <scp>ZrS</scp> ₂ â€based nanotubes. Journal of Computational Chemistry, 2016, 37, 641-652.	3.3	13
63	Young's modulus and Poisson's ratio for TiO2-based nanotubes and nanowires: modelling of temperature dependence. RSC Advances, 2016, 6, 16037-16045.	3.6	6
64	Thermodynamic properties of nanotubes: zone-folding approach. Lithuanian Journal of Physics, 2016, 56, 164-172.	0.4	7
65	Theoretical study of <i>α</i> - and <i>γ</i> -V ₂ O ₅ double-walled nanotubes. Lithuanian Journal of Physics, 2016, 56, .	0.4	0
66	Theoretical Study of αâ€V ₂ O ₅ â€Based Doubleâ€Wall Nanotubes. ChemPhysChem, 20 16, 3007-3014.	¹⁵ .2.1	8
67	Quantum Chemical Study of Water Adsorption on the Surfaces of SrTiO ₃ Nanotubes. ChemPhysChem, 2015, 16, 2192-2198.	2.1	2
68	Temperature dependence of Young's modulus of titanium dioxide (TIO2) nanotubes: Molecular mechanics modeling. Physics of the Solid State, 2015, 57, 2464-2472.	0.6	10
69	Energetic stability and photocatalytic activity of SrTiO3 nanowires: ab initio simulations. RSC Advances, 2015, 5, 24115-24125.	3.6	14
70	Symmetry classification of electron and phonon states in TiO ₂ â€based nanowires and nanotubes. Journal of Computational Chemistry, 2015, 36, 957-969.	3.3	5
71	Structure and stability of SnS2-based single- and multi-wall nanotubes. Surface Science, 2015, 641, 6-15.	1.9	22
72	Ab initio modeling of single wall nanotubes folded from α- and γ-V2O5 monolayers: structural, electronic and vibrational properties. CrystEngComm, 2015, 17, 3277-3285.	2.6	5

#	Article	IF	CITATIONS
73	Ab initio modeling of wall structure and shape in perovskite-based nanotubes. Computational Materials Science, 2015, 96, 124-133.	3.0	6
74	Ternary Oxides. Nanoscience and Technology, 2015, , 545-610.	1.5	1
75	Sulfides. Nanoscience and Technology, 2015, , 611-651.	1.5	0
76	Nitrides of Boron and Group III Metals. Nanoscience and Technology, 2015, , 347-427.	1.5	0
77	Group IV Semiconductors. Nanoscience and Technology, 2015, , 253-346.	1.5	Ο
78	First-Principles Simulations of Bulk Crystal and Nanolayer Properties. Nanoscience and Technology, 2015, , 113-214.	1.5	0
79	Binary Oxides of Transition Metals. Nanoscience and Technology, 2015, , 429-543.	1.5	Ο
80	The Symmetry Groups in Three-Dimensional Space. Nanoscience and Technology, 2015, , 9-112.	1.5	0
81	First-principles calculations of single-walled nanotubes in sulfides MS2(M = Ti, Zr). Physica Scripta, 2014, 89, 044001.	2.5	8
82	Oxygen vacancy formation energies in Sr-doped complex perovskites: ab initio thermodynamic study. Solid State Ionics, 2014, 254, 11-16.	2.7	26
83	TiS ₂ and ZrS ₂ single- and double-wall nanotubes: First-principles study. Journal of Computational Chemistry, 2014, 35, 395-405.	3.3	24
84	Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations. Physical Chemistry Chemical Physics, 2014, 16, 14781.	2.8	19
85	Hybrid Hartree–Fock-density functional theory study of V2O5 three phases: Comparison of bulk and layer stability, electron and phonon properties. Acta Materialia, 2014, 75, 246-258.	7.9	20
86	Theoretical modeling of antiferrodistortive phase transition for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>SrTi</mml:mtext><mml:msub><mml:mi mathvariant="normal">O<mml:mn>3</mml:mn></mml:mi </mml:msub>ultrathin films. Physical Review B, 2013, 88, .</mml:math 	3.2	13
87	Theoretical modeling of the complexes of iron impurities and oxygen vacancies in SrTiO3. Applied Physics Letters, 2013, 102, .	3.3	29
88	A Comparative <i>Ab Initio</i> Thermodynamic Study of Oxygen Vacancies in ZnO and SrTiO ₃ : Emphasis on Phonon Contribution. Journal of Physical Chemistry C, 2013, 117, 13776-13784.	3.1	72
89	Quantum mechanics based classical molecular dynamics study of water adsorption on (001) SrMO3 surfaces (M=Ti, Zr). Surface Science, 2013, 611, 10-24.	1.9	5
90	Ab initio LCAO study of the atomic, electronic and magnetic structures and the lattice dynamics of triclinic CuWO4. Acta Materialia, 2013, 61, 371-378.	7.9	49

#	Article	IF	CITATIONS
91	Four-faceted nanowires generated from densely-packed TiO2 rutile surfaces: Ab initio calculations. Surface Science, 2013, 608, 226-240.	1.9	20
92	BaTiO ₃ â€based nanolayers and nanotubes: Firstâ€principles calculations. Journal of Computational Chemistry, 2013, 34, 175-186.	3.3	15
93	Nanotubes folded from cubic and orthorhombic SrZrO3: First-principles study. IOP Conference Series: Materials Science and Engineering, 2013, 49, 012009.	0.6	3
94	SYMMETRY AND CALCULATIONS OF NANOTUBES AND NANOWIRES BASED ON RUTILE AND PEROVSKITE STRUCTURES. , 2013, , .		0
95	LCAO Calculations on Uranium Nitrides. Springer Series in Solid-state Sciences, 2012, , 603-630.	0.3	0
96	<i>Ab initio</i> simulations on rutile-based titania nanowires. IOP Conference Series: Materials Science and Engineering, 2012, 38, 012005.	0.6	2
97	Rod groups and their settings as special geometric realisations of line groups. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, 582-588.	0.3	5
98	Ab initio structure modeling of ZrO2 nanosheets and single-wall nanotubes. Computational Materials Science, 2012, 65, 395-405.	3.0	31
99	Hartree–Fock LCAO Method for Periodic Systems. Springer Series in Solid-state Sciences, 2012, , 109-155.	0.3	1
100	Semiempirical LCAO Methods for Molecules and Periodic Systems. Springer Series in Solid-state Sciences, 2012, , 207-249.	0.3	0
101	Jahn-Teller effect in the phonon properties of defective SrTiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>from first principles. Physical Review B, 2012, 85, .</mml:math 	3.2	51
102	Quantum Chemistry of Solids. Springer Series in Solid-state Sciences, 2012, , .	0.3	51
103	Firstâ€principles calculations on thermodynamic properties of BaTiO ₃ rhombohedral phase. Journal of Computational Chemistry, 2012, 33, 1554-1563.	3.3	12
104	Firstâ€principles calculations on the four phases of BaTiO ₃ . Journal of Computational Chemistry, 2012, 33, 1123-1130.	3.3	89
105	Symmetry and Stability of the Rutile-Based TiO ₂ Nanowires: Models and Comparative LCAO-Plane Wave DFT Calculations. Journal of Physical Chemistry C, 2012, 116, 13395-13402.	3.1	21
106	Symmetry and Non-empirical Calculations of Structure and Properties of Single- and Double-Wall SrTiO3 Nanotubes. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 75-85.	0.3	6
107	Electron Correlations in Molecules and Crystals. Springer Series in Solid-state Sciences, 2012, , 157-206.	0.3	0
108	Basis Sets and Pseudopotentials in Periodic LCAO Calculations. Springer Series in Solid-state Sciences, 2012, , 305-356.	0.3	0

#	Article	IF	CITATIONS
109	Modeling and LCAO Calculations of Point Defects in Crystals. Springer Series in Solid-state Sciences, 2012, , 489-540.	0.3	0
110	Symmetry and Modeling of BN, TiO2, and SrTiO3 Nanotubes. Springer Series in Solid-state Sciences, 2012, , 631-690.	0.3	0
111	Surface Modeling in LCAO Calculations of Metal Oxides. Springer Series in Solid-state Sciences, 2012, , 541-601.	0.3	Ο
112	LCAO Calculations of Perfect-Crystal Properties. Springer Series in Solid-state Sciences, 2012, , 357-488.	0.3	0
113	Symmetry and Localization of Crystalline Orbitals. Springer Series in Solid-state Sciences, 2012, , 47-107.	0.3	Ο
114	Confinement effects for ionic carriers in SrTiO ₃ ultrathin films: first-principles calculations of oxygen vacancies. Physical Chemistry Chemical Physics, 2011, 13, 923-926.	2.8	17
115	LCAO Calculations of (001) Surface Oxygen Vacancy Structure in Y-Doped BaZrO3. Integrated Ferroelectrics, 2011, 123, 1-9.	0.7	4
116	Symmetry and Models of Double-Wall BN and TiO ₂ Nanotubes with Hexagonal Morphology. Journal of Physical Chemistry C, 2011, 115, 14067-14076.	3.1	33
117	A Comparative Hybrid DFT Study of Phonons in Several SrTiO ₃ Phases. Integrated Ferroelectrics, 2011, 123, 18-25.	0.7	4
118	Hybrid density functional theory LCAO calculations on phonons in Ba(Ti,Zr,Hf) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow>. Physical</mml:math 	3.2	49
119	Review Real Culau 875 in cubic and tetragonal phases of Sr110 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > <mml:mrow> <mml:msub> <mml:mrow /> <mml:mrow> <mml:mn> 3 </mml:mn> </mml:mrow> </mml:mrow </mml:msub> </mml:mrow> : A</mml:math 	3.2	81
120	Comparative LCAO and plane-wave study. Physical Review B, 2011, 83, . LCAO calculations of SrTiO3nanotubes. IOP Conference Series: Materials Science and Engineering, 2011, 23, 012013.	0.6	8
121	First-principles LCAO study of phonons in NiWO4. Open Physics, 2011, 9, .	1.7	23
122	Symmetry and models of single-walled TiO2 nanotubes with rectangular morphology. Open Physics, 2011, 9, 492-501.	1.7	21
123	LCAO calculation of water adsorption on (001) surface of Y-doped BaZrO3. Solid State Ionics, 2011, 188, 25-30.	2.7	8
124	First-principles calculations on double-walled inorganic nanotubes with hexagonal chiralities. IOP Conference Series: Materials Science and Engineering, 2011, 23, 012014.	0.6	2
125	Symmetry and structure of SrTiO ₃ nanotubes. IOP Conference Series: Materials Science and Engineering, 2011, 23, 012012.	0.6	6
126	Symmetry and stability of nanotubes based on titanium dioxide. Russian Journal of General Chemistry, 2010, 80, 1152-1167.	0.8	13

#	Article	IF	CITATIONS
127	Titania nanotubes modeled from 3- and 6-layered (101) anatase sheets: Line group symmetry and comparative ab initio LCAO calculations. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 266-278.	2.7	49
128	Hybrid HF–DFT modeling of monolayer water adsorption on (001) surface of cubic BaHfO3 and BaZrO3 crystals. Surface Science, 2010, 604, 1591-1597.	1.9	40
129	Hybrid density-functional calculations of phonons in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow> < mml:msub> < mml:mrow> < mml:mtext> LaCoO < / mml:mtext> < / mml:mrow> < mml:m Physical Review B. 2010. 82	nn ³ 3 <td>nl:mn></td>	nl:mn>
130	Symmetry and Models of Single-Wall BN and TiO ₂ Nanotubes with Hexagonal Morphology. Journal of Physical Chemistry C, 2010, 114, 21061-21069.	3.1	46
131	FIRST-PRINCIPLES LCAO CALCULATIONS ON 5D TRANSITION METAL OXIDES: ELECTRONIC AND PHONON PROPERTIES. Integrated Ferroelectrics, 2009, 108, 1-10.	0.7	21
132	HYBRID HF-DFT MODELLING OF WATER ADSORPTION ON (001) SURFACE OF ORTHORHOMBIC AND CUBIC SrHfO ₃ . Integrated Ferroelectrics, 2009, 108, 37-45.	0.7	16
133	Quantum mechanics–molecular dynamics approach to the interpretation of x-ray absorption spectra. Journal of Physics Condensed Matter, 2009, 21, 055401.	1.8	33
134	Allâ€electron LCAO calculations of the LiF crystal phonon spectrum: Influence of the basis set, the exchangeâ€correlation functional, and the supercell size. Journal of Computational Chemistry, 2009, 30, 2645-2655.	3.3	23
135	Ab initio study of the electronic and atomic structure of the wolframite-type ZnWO4. Solid State Communications, 2009, 149, 425-428.	1.9	54
136	First principles calculations of oxygen adsorption on the UN(001) surface. Surface Science, 2009, 603, 50-53.	1.9	22
137	From anatase (101) surface to TiO2 nanotubes: Rolling procedure and first principles LCAO calculations. Surface Science, 2009, 603, L117-L120.	1.9	68
138	Surface modelling on heavy atom crystalline compounds: HfO2 and UO2 fluorite structures. Acta Materialia, 2009, 57, 600-606.	7.9	23
139	First-principles study of bulk and surface oxygen vacancies in SrTiO3 crystal. European Physical Journal B, 2009, 72, 53-57.	1.5	94
140	Quantum-chemical calculations of the variance of phonons in crystals: Convergence of results depending on cyclic cluster growth. Russian Journal of General Chemistry, 2009, 79, 509-510.	0.8	0
141	Interpretation of EXAFS in ReO ₃ using molecular dynamics simulations. Journal of Physics: Conference Series, 2009, 190, 012080.	0.4	18
142	Quantum mechanics-classical molecular dynamics approach to EXAFS. Journal of Physics: Conference Series, 2009, 190, 012024.	0.4	11
143	Electronic structure of crystalline uranium nitride: LCAO DFT calculations. Physica Status Solidi (B): Basic Research, 2008, 245, 114-122.	1.5	22
144	A firstâ€principles DFT study of UN bulk and (001) surface: Comparative LCAO and PW calculations. Journal of Computational Chemistry, 2008, 29, 2079-2087.	3.3	40

#	Article	IF	CITATIONS
145	Surface relaxation and tilting in SrHfO3 orthorhombic perovskite: Hybrid HF-DFT LCAO calculations. Surface Science, 2008, 602, 3674-3682.	1.9	15
146	Calculations of electronic structure of the UF6 molecule and the UO2 crystal with a relativistic pseudopotential. Russian Journal of General Chemistry, 2008, 78, 1823-1835.	0.8	9
147	<i>Ab initio</i> modeling of spin and charge ordering and lattice dynamics in CaFeO3 crystals. Journal of Chemical Physics, 2008, 129, 214704.	3.0	7
148	Electronic structure of crystalline uranium nitrides UN, U ₂ N ₃ and UN ₂ : LCAO calculations with the basis set optimization. Journal of Physics: Conference Series, 2008, 117, 012015.	0.4	23
149	display="inline"> <mml:mrow><mml:mi mathvariant="normal">Sr</mml:mi><mml:msub><mml:mi mathvariant="normal">Fe<mml:mi></mml:mi></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">Ti<mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'</mml:mo><mml:mi>xmathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:mrow></mml:mi </mml:msub></mml:mrow> :	ım <mark>8;2</mark> i> <td>nml:mrow><!--</td--></td>	nml:mrow> </td
150	Jahn-Teller distortion and electronic structure. Physical Review B, 2008, 77 <i>Ab initio</i> study of bulk and surface iron defects in SrTiO ₃ . Journal of Physics: Conference Series, 2008, 117, 012001.	0.4	3
151	The water adsorption on the surfaces of SrMO ₃ (M= Ti, Zr, and Hf) crystalline oxides: quantum and classical modelling. Journal of Physics: Conference Series, 2007, 93, 012001.	0.4	22
152	Adsorption of water on (001) surface of SrTiO3 and SrZrO3 cubic perovskites: Hybrid HF-DFT LCAO calculations. Surface Science, 2007, 601, 1844-1856.	1.9	77
153	Periodic models in quantum chemical simulations of <i>F</i> centers in crystalline metal oxides. International Journal of Quantum Chemistry, 2007, 107, 2956-2985.	2.0	69
154	Electronic structure of crystalline uranium nitride: LCAO DFT calculations. Journal of Structural Chemistry, 2007, 48, S125-S133.	1.0	2
155	First-principles calculations of the atomic and electronic structure ofFcenters in the bulk and on the (001) surface ofSrTiO3. Physical Review B, 2006, 73, .	3.2	152
156	DFT study of a singleF center in cubic SrTiO3 perovskite. International Journal of Quantum Chemistry, 2006, 106, 2173-2183.	2.0	30
157	Ab initio calculations and analysis of chemical bonding in SrTiO3 and SrZrO3 cubic crystals. International Journal of Quantum Chemistry, 2006, 106, 2191-2200.	2.0	10
158	Electronic and magnetic structure of ScMnO3. Physica Status Solidi (B): Basic Research, 2006, 243, R10-R12.	1.5	98
159	Plain DFT and hybrid HF-DFT LCAO calculations of SnO2 (110) and (100) bare and hydroxylated surfaces. Physica Status Solidi (B): Basic Research, 2006, 243, 1823-1834.	1.5	30
160	Hybrid HF-DFT comparative study of SrZrO3 and SrTiO3(001) surface properties. Physica Status Solidi (B): Basic Research, 2006, 243, 2756-2763.	1.5	27
161	Thermodynamic stability and disordering in La Sr1â^'MnO3 solid solutions. Solid State Ionics, 2006, 177, 217-222.	2.7	31
162	Projection Technique for Population Analysis of Atomic Orbitals in Crystals. Physics of the Solid State, 2005, 47, 1837.	0.6	3

#	Article	IF	CITATIONS
163	Calculations of the Electronic Structure of Crystalline SrZrO[sub 3] in the Framework of the Density-Functional Theory in the LCAO Approximation. Physics of the Solid State, 2005, 47, 2248.	0.6	14
164	Wannier-type atomic orbitals for periodic systems. Theoretical Chemistry Accounts, 2005, 114, 19-28.	1.4	7
165	Ab initio calculations of charged point defects in GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 507-510.	0.8	12
166	LCAO calculation of neutral defects in GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2525-2528.	0.8	0
167	Wannier functions and chemical bonding in a slab model: MgO (001) and TiO2 (110) surfaces. International Journal of Quantum Chemistry, 2005, 104, 102-109.	2.0	1
168	Local characteristics of the electronic structure of MgO: LCAO and plane-wave calculations. International Journal of Quantum Chemistry, 2005, 104, 110-113.	2.0	3
169	Trends in calculation of point and extended defects in wide-gap solids: periodic models of aperiodic systems. Physica Status Solidi A, 2005, 202, 235-242.	1.7	9
170	DFT LCAO and plane wave calculations of SrZrO3. Physica Status Solidi (B): Basic Research, 2005, 242, R11-R13.	1.5	29
171	Comparative density-functional LCAO and plane-wave calculations ofLaMnO3surfaces. Physical Review B, 2005, 72, .	3.2	84
172	Symmetry analysis for localized function generation and chemical bonding in crystals:SrZrO3and MgO as examples. Physical Review B, 2005, 72, .	3.2	5
173	DFT plane wave calculations of the atomic and electronic structure of LaMnO3(001) surface. Physical Chemistry Chemical Physics, 2005, 7, 2346.	2.8	54
174	Special points for calculating integrals over the primitive cell of a periodic system. Physics of the Solid State, 2004, 46, 1213-1224.	0.6	0
175	First-principles periodic and semiempirical cyclic cluster calculations for single oxygen vacancies in crystalline Al2O3. Physica Status Solidi (B): Basic Research, 2004, 241, 1032-1040.	1.5	25
176	Use of Wannier-type atomic orbitals in LCAO and plane wave calculations: Chemical bonding in MgO crystal. Physica Status Solidi (B): Basic Research, 2004, 241, R35-R37.	1.5	3
177	Quantum chemical calculation of crystalline model of biomembrane. International Journal of Quantum Chemistry, 2004, 96, 106-115.	2.0	Ο
178	Chemical bonding in crystalline silver halides: Wannier-type atomic functions approach. International Journal of Quantum Chemistry, 2004, 96, 95-105.	2.0	7
179	Hartree-Fock calculations of electronic structure of (110)-surface of rutile TiO2: Comparison of single (2D) and periodic (3D) slab models. International Journal of Quantum Chemistry, 2004, 96, 282-291.	2.0	15
180	Wannier functions and chemical bonding in crystals with the perovskite-like structure: SrTiO3, BaTiO3, PbTi3, and LaMnO3. International Journal of Quantum Chemistry, 2004, 100, 352-359.	2.0	12

#	Article	IF	CITATIONS
181	HF and DFT calculations of MgO surface energy and electrostatic potential using two- and three-periodic models. International Journal of Quantum Chemistry, 2004, 100, 452-459.	2.0	30
182	Atomistic modeling of polar LaMnO3 surfaces. Sensors and Actuators B: Chemical, 2004, 100, 81-87.	7.8	10
183	Ab initio calculations of the LaMnO3 surface properties. Applied Surface Science, 2004, 238, 457-463.	6.1	27
184	Adsorption of Water on the TiO2(Rutile) (110) Surface:Â A Comparison of Periodic and Embedded Cluster Calculations. Journal of Physical Chemistry B, 2004, 108, 7844-7853.	2.6	126
185	Modification of the Monkhorst-Pack special points meshes in the Brillouin zone for density functional theory and Hartree-Fock calculations. Physical Review B, 2004, 70, .	3.2	103
186	Ab initio Hartree-Fock calculations of LaMnO3 (110) surfaces. Solid State Communications, 2003, 127, 367-371.	1.9	29
187	Local properties of the electronic structure of cubic SrTiO3, BaTiO3 and PbTiO3 crystals, analysed using Wannier-type atomic functions. Solid State Communications, 2003, 127, 423-426.	1.9	22
188	A point group approach to selection rules in crystals. Physics of the Solid State, 2003, 45, 1440-1450.	0.6	0
189	Full inclusion of symmetry in constructing Wannier functions: Chemical bonding in MgO and TiO2 crystals. Physics of the Solid State, 2003, 45, 2072-2082.	0.6	16
190	<title>Large-scale first-principles calculations of Fe-doped
SrTiO<formula><inf><roman>3</roman></inf></formula></title> ., 2003, , .		0
191	Single impurities in insulators:â \in f Ab initiostudy of Fe-dopedSrTiO3. Physical Review B, 2003, 67, .	3.2	67
192	Large- Scale ab initio Simulations of Fe-doped SrTiO3 Perovskites. Materials Research Society Symposia Proceedings, 2002, 731, 3121.	0.1	0
193	Large-scale ab initio modelling of defects in perovskites: Fe impurity in SrTiO3. Computational Materials Science, 2002, 24, 14-20.	3.0	8
194	Effects of electronic correlation on local properties of electronic structure of TiO2 and Ti2O3 crystals: DFT and post-HF approaches. International Journal of Quantum Chemistry, 2002, 88, 472-480.	2.0	2
195	Wannier-type atomic functions and chemical bonding in crystals. International Journal of Quantum Chemistry, 2002, 88, 642-651.	2.0	28
196	Computer modeling of C2 cluster addition to fullerene C60. International Journal of Quantum Chemistry, 2002, 88, 652-662.	2.0	10
197	The hartree-fock method and density-functional theory as applied to an infinite crystal and to a cyclic cluster. Physics of the Solid State, 2002, 44, 1656-1670.	0.6	17
198	Connection between slab and cluster models for crystalline surfaces. Physics of the Solid State, 2001, 43, 1774-1782.	0.6	19

#	Article	IF	CITATIONS
199	Molecular-crystalline approach to evaluation of correlation corrections in the theory of chemical bonding in crystals: Electronic structure of Ti2O3 crystals. Physics of the Solid State, 2000, 42, 59-64.	0.6	3
200	Local characteristics of crystal electronic structure in the Hartree-Fock method. Physics of the Solid State, 1999, 41, 1286-1290.	0.6	33
201	Correlation Effects in the Unrestricted Hartree-Fock Method for Solids: Electronic Structure of Ti2O3 Crystal. Physica Status Solidi (B): Basic Research, 1999, 214, r5-r6.	1.5	1
202	Supercell Model of V-Doped TiO2: Unrestricted Hartree-Fock Calculations. Physica Status Solidi (B): Basic Research, 1999, 215, 949-956.	1.5	18
203	Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Physical Review B, 1998, 58, 12899-12907.	3.2	741
204	Electronic structure of lead (II) fluoride and lead (II) chloride crystals. Physics of the Solid State, 1998, 40, 211-212.	0.6	1
205	Electron State Symmetries and Optical Selection Rules in the (GaAs)m(AlAs)n Superlattices Grown along the [001], [110], and [111] Directions. , 1998, , 1-75.		0
206	Electron state symmetries and optical transitions in semiconductor superlattices: II. grown along the [110] and [111] directions. Journal of Physics Condensed Matter, 1997, 9, 277-297.	1.8	4
207	Electron state symmetries and optical transitions in semiconductor superlattices: I. grown along the [001] direction. Journal of Physics Condensed Matter, 1997, 9, 257-276.	1.8	15
208	Formation, diffusion, and aggregation of radiation-induced defects in MgO and $\hat{l}\pm$ -Al 2 O 3. , 1997, , .		1
209	Electronic structure and properties ofCu2O. Physical Review B, 1997, 56, 7189-7196.	3.2	146
210	Symmetrical transformation of basic translation vectors in the supercell model of imperfect crystals and in the theory of special points of the Brillouin zone. Journal of Physics Condensed Matter, 1997, 9, 3023-3031.	1.8	19
211	Symmetry of the Model of a Crystal with a Periodic Defect: Point Defects in MgO Crystal. Physica Status Solidi (B): Basic Research, 1997, 201, 75-87.	1.5	5
212	Hartree-Fock Study of the Chemical Bonding in Crystalline Titanium Oxides: TiO2, Ti2O3, TiO. Physica Status Solidi (B): Basic Research, 1997, 203, R3-R4.	1.5	13
213	Site Symmetry in Crystals. Springer Series in Solid-state Sciences, 1997, , .	0.3	87
214	Site Symmetry and Induced Representations of Symmetry Groups. Springer Series in Solid-state Sciences, 1997, , 89-124.	0.3	1
215	Application of Induced Representations of Space Groups to Second Order Phase Transitions. Springer Series in Solid-state Sciences, 1997, , 205-212.	0.3	0
216	Application of Induced Representations in the Electron Theory of Molecules and Crystals. Springer Series in Solid-state Sciences, 1997, , 125-184.	0.3	0

#	Article	IF	CITATIONS
217	Induced Representations of Space Groups in Phonon Spectroscopy of Crystals. Springer Series in Solid-state Sciences, 1997, , 213-236.	0.3	0
218	Site Symmetry in Magnetic Crystals and Induced Corepresentations. Springer Series in Solid-state Sciences, 1997, , 237-250.	0.3	0
219	Investigation of the chemical bonding in nickel mixed oxides from electronic structure calculations. Journal of Physics and Chemistry of Solids, 1996, 57, 1839-1850.	4.0	23
220	Oxygen interstitials in magnesium oxide: A band-model study. Physical Review B, 1996, 54, 8969-8972.	3.2	15
221	Layer and bulk phonon modes in the YBa2Cu3O6 compound. Physica C: Superconductivity and Its Applications, 1995, 245, 48-56.	1.2	2
222	Quasi-two-dimensional behavior of phonon subsystems and the superconductivity mechanism in perovskitelike compounds. Physical Review B, 1994, 49, 9933-9943.	3.2	24
223	Quantum chemical calculation of nickel and copper atomic valencies in crystalline oxides. International Journal of Quantum Chemistry, 1994, 52, 295-299.	2.0	4
224	Electronic structure and chemical bonding in Bi ₂ O ₃ . Physica Status Solidi (B): Basic Research, 1994, 183, K15.	1.5	12
225	Quasi two dimensionality of phonon subsystems of perovskite-like high-Tc superconductors. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1169-1170.	1.2	1
226	Phonon symmetry and Raman spectra of fullerites. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1201-1202.	1.2	0
227	The electronic structure of crystalline nickel oxides. Journal of Electron Spectroscopy and Related Phenomena, 1994, 68, 555-563.	1.7	10
228	Optical Phonons and Their Role in Highâ€ <i>T</i> _c Superconductivity Mechanism. Physica Status Solidi (B): Basic Research, 1993, 179, 249-297.	1.5	8
229	The Electronic Structure and the Chemical Bonding in NiO and La ₂ NiO ₄ Crystals. A Comparison with CuO and La ₂ CuO ₄ . Physica Status Solidi (B): Basic Research, 1993, 179, 441-451.	1.5	9
230	Band and Localized States in Finite and Infinite Crystals. Physica Status Solidi (B): Basic Research, 1993, 180, 411-421.	1.5	4
231	Site Symmetry in Crystals. Springer Series in Solid-state Sciences, 1993, , .	0.3	23
232	Site Symmetry in Magnetic Crystals and Induced Corepresentations. Springer Series in Solid-state Sciences, 1993, , 237-250.	0.3	0
233	Induced Representations in the Theory of Imperfect Crystals. Springer Series in Solid-state Sciences, 1993, , 185-204.	0.3	0
234	Application of Induced Representations of Space Group to Second Order Phase Transitions. Springer Series in Solid-state Sciences, 1993, , 205-212.	0.3	0

#	Article	IF	CITATIONS
235	Induced Representations in the Theory of Imperfect Crystals. Springer Series in Solid-state Sciences, 1993, , 185-203.	0.3	0
236	Application of Induced Representations in the Electron Theory of Molecules and Crystals. Springer Series in Solid-state Sciences, 1993, , 125-184.	0.3	0
237	Electronic Structure of La ₂ O ₃ and LaF ₃ Crystals. Physica Status Solidi (B): Basic Research, 1992, 170, 145-153.	1.5	24
238	Normal modes of Biî—,Srî—,Caî—,Cuî—,O high-temperature superconductors: layer-by-layer approach. Physica C: Superconductivity and Its Applications, 1992, 190, 477-482.	1.2	9
239	USE OF THE CYCLIC MODEL IN THE DESCRIPTION OF LOCAL PROPERTIES OF COMPOSITE CRYSTALLINE OXIDES. , 1992, , 355-373.		0
240	Site group analysis of normal modes in semiconductor superlattices. The Journal of Physical Chemistry, 1991, 95, 10772-10776.	2.9	13
241	Site symmetry approach to lattice dynamics of semiconductor superlattices. Superlattices and Microstructures, 1991, 9, 211-217.	3.1	1
242	The Electronic Structure of Crystalline Lead Oxides. I. Crystal Structure and LUC NDO Calculations. Physica Status Solidi (B): Basic Research, 1991, 165, 401-410.	1.5	16
243	The Electronic Structure of Crystalline Lead Oxides. II. Chemical Bonding in the Crystalline Lead Oxides. Physica Status Solidi (B): Basic Research, 1991, 165, 411-418.	1.5	6
244	Quantum-chemical definition of the atomic valence in molecules and crystals. Theoretica Chimica Acta, 1991, 81, 95-103.	0.8	47
245	Electronic structure of defects on the surface of graphite. Theoretical and Experimental Chemistry, 1990, 26, 56-59.	0.8	0
246	The origin of energy functional in Roothaan open shellSCF theory. International Journal of Quantum Chemistry, 1990, 37, 35-50.	2.0	22
247	The Electronic Structure of Copper Oxide Crystalline Compounds. I. LUCâ€CNDO Approach to the Electronic Structure of Cu ₂ 0 and CuO Crystals. Physica Status Solidi (B): Basic Research, 1990, 157, 281-291.	1.5	17
248	The Electronic Structure of Copper Oxide Crystalline Compounds. II. Chemical Bonding in Copper–Oxygen Crystals. Physica Status Solidi (B): Basic Research, 1990, 158, 201-212.	1.5	15
249	Electronic structure of fluorite-type crystals. Journal of Physics Condensed Matter, 1989, 1, 6603-6609.	1.8	10
250	Application of embedded-cluster models in the theory of local centres in graphite. Journal of Physics Condensed Matter, 1989, 1, 6611-6623.	1.8	6
251	Inelastic light scattering in GaAsî—ʿAlAs superlattices. Superlattices and Microstructures, 1989, 6, 227-231.	3.1	6
252	Band Corepresentations of Magnetic Space Groups. Physica Status Solidi (B): Basic Research, 1989, 151, 275-282.	1.5	4

#	Article	IF	CITATIONS
253	Tensor fields in crystals and band representations of space groups. Physica Status Solidi (B): Basic Research, 1989, 152, 633-638.	1.5	4
254	Simplifying the self-consistent procedure in crystal electronic-structure calculations. Journal of Structural Chemistry, 1988, 28, 810-810.	1.0	0
255	Doubleâ€Valued Band Representations of Monoclinic and Orthorhombic Space Groups. Physica Status Solidi (B): Basic Research, 1988, 145, 391-399.	1.5	3
256	Symmetry of localized orbitals in molecules with spin-orbit interaction. Theoretical and Experimental Chemistry, 1988, 24, 84-88.	0.8	0
257	Cluster-model crystal band state derivation. Theoretical and Experimental Chemistry, 1988, 23, 670-673.	0.8	0
258	Symmetry of Localized Crystalline Orbitals and Doubleâ€Valued Band Representation. Physica Status Solidi (B): Basic Research, 1987, 142, 493-499.	1.5	8
259	Induced representations of point groups and symmetry of localized orbitals. Theoretical and Experimental Chemistry, 1987, 22, 613-621.	0.8	0
260	Application of Band Representations of Space Groups in the Theory of Phase Transitions and Point Defects in Crystals. Physica Status Solidi (B): Basic Research, 1986, 136, 409-415.	1.5	7
261	Symmetry Groups of Cyclic Systems in Crystals. Physica Status Solidi (B): Basic Research, 1985, 128, 275-285.	1.5	15
262	Symetry of localized orbitals and the nature of the chemical bond in crystals. Journal of Structural Chemistry, 1985, 25, 509-515.	1.0	2
263	Group theoretic analysis of localized molecular orbitals. Theoretical and Experimental Chemistry, 1984, 20, 125-131.	0.8	1
264	Application of the Band Representations of Space Groups in the Theory of Electronic States of Crystalline Solids. I. General Consideration of the Band Representations. Physica Status Solidi (B): Basic Research, 1984, 122, 231-238.	1.5	16
265	Application of the Band Representations of Space Groups in the Theory of Electronic States of Crystalline Solids. II. Band Representations for Some Space Groups. Physica Status Solidi (B): Basic Research, 1984, 122, 559-567.	1.5	7
266	The cluster approximation in the theory of point defects in solids. Journal of Structural Chemistry, 1984, 24, 540-555.	1.0	0
267	Electronic energy for molecular systems with open shells in the restricted Hartree-Fock method. Theoretical and Experimental Chemistry, 1983, 18, 465-470.	0.8	1
268	Self onsistent energy band structure of tetragonal lead oxide. Physica Status Solidi (B): Basic Research, 1983, 115, K15.	1.5	9
269	Hartreeâ€fock exchange and LCAO approximation in the band structure calculations of solids. Physica Status Solidi (B): Basic Research, 1983, 117, 417-427.	1.5	23
270	The Quasimolecular Approach to the Electronic Structure Calculations for Silver and Copper Halides. Physica Status Solidi (B): Basic Research, 1983, 118, 191-203.	1.5	10

#	Article	IF	CITATIONS
271	Special points of the brillouin zone and their use in the solid state theory. Physica Status Solidi (B): Basic Research, 1983, 119, 9-40.	1.5	176
272	Energy Band Structure of Rhombic Lead Monoxide. Physica Status Solidi (B): Basic Research, 1982, 111, K123.	1.5	7
273	Semiempirical Calculations of the Impurity Level Positions with Respect to the Perfect Crystal Bands. Physica Status Solidi (B): Basic Research, 1981, 103, 581-587.	1.5	14
274	The Energy Band Structure of Corundum. Physica Status Solidi (B): Basic Research, 1980, 99, 387-396.	1.5	56
275	Use of the Large Unit Cell Approach for Generating Special Points of the Brillouin Zone. Physica Status Solidi (B): Basic Research, 1980, 99, 463-470.	1.5	14
276	Total and local symmetries in group-theory analysis of molecular states. Theoretical and Experimental Chemistry, 1980, 16, 175-179.	0.8	0
277	Use of the Symmetryâ€Adapted Atomic Orbitals in the Large Unit Cell Approach to Solids. Physica Status Solidi (B): Basic Research, 1979, 93, 469-482.	1.5	39
278	Large unit cell calculations of the band structure of ionic crystals using the Mullikenâ€Ruedenberg approximation. Physica Status Solidi (B): Basic Research, 1978, 86, 47-55.	1.5	12
279	Large unit cell calculations of solids in the CNDO approximation. Physica Status Solidi (B): Basic Research, 1977, 79, 743-751.	1.5	77
280	A program for quantum-chemical molecular calculations by the Mulliken-Rudenberg method. Journal of Structural Chemistry, 1977, 17, 473-474.	1.0	0
281	Program for carrying out quantum-chemical calculations for quasi-molecules and crystals with the introduction of cyclic boundary conditions. Journal of Structural Chemistry, 1977, 18, 335-337.	1.0	1
282	Molecular Cluster Approach to Magnesium and Calcium Oxide Crystals. II. F ⁺ and F Centres. Physica Status Solidi (B): Basic Research, 1976, 73, 81-86.	1.5	7
283	Molecular Cluster Approach to Magnesium and Calcium Oxide Crystals III. Charge Distribution Analysis of Some Hole Centres. Physica Status Solidi (B): Basic Research, 1976, 73, 483-486.	1.5	2
284	Comparison of the Large Unit Cell and Small Periodic Cluster Approaches to the Quasimolecular Calculations of the Band Spectra of Crystals. Physica Status Solidi (B): Basic Research, 1976, 76, 377-383.	1.5	21
285	Role of population analysis in LCAO-MO theory of transition-metal clusters. European Physical Journal D, 1975, 25, 1201-1207.	0.4	2
286	The translational symmetry in the molecular models of solids. Physica Status Solidi (B): Basic Research, 1975, 68, 453-461.	1.5	42
287	Monovalent Mercuryâ€Like Ion Dimer Centres in Alkali Halide Crystals. Physica Status Solidi (B): Basic Research, 1975, 70, 749-758.	1.5	21
288	Use of representative points of the Brillouin zone for the self onsistent calculations of solids in the large unit cell approach. Physica Status Solidi (B): Basic Research, 1975, 72, 569-578.	1.5	40

#	Article	IF	CITATIONS
289	Molecular cluster approach to magnesium and calcium oxide crystals. I. Perfect crystals. Physica Status Solidi (B): Basic Research, 1975, 72, 787-794.	1.5	12
290	Molecular orbital calculations on the Re2Cl 8 2? anion. Journal of Structural Chemistry, 1974, 14, 906-907.	1.0	0
291	Molecular Cluster Approach to Smallâ€Radius Impurity Centres in Solids. Physica Status Solidi (B): Basic Research, 1974, 64, 635-642.	1.5	20
292	Point Defects in Lithium Hydride Crystals. Physica Status Solidi (B): Basic Research, 1974, 66, 687-694.	1.5	10
293	The Calculation of the offâ€Centred Electronic Structure of the F _A â€Centre with Floating Wave Functions. Physica Status Solidi (B): Basic Research, 1971, 46, K13.	1.5	2
294	The electronic structure of the N ₁ ―and N ₂ olour centres in alkali halides. Physica Status Solidi (B): Basic Research, 1971, 47, K59.	1.5	3
295	The effect of the impurity displacement on the properties of the F _A (Li) colour centre in KCI. Physica Status Solidi (B): Basic Research, 1971, 48, K103.	1.5	2
296	The superposition of the wavefunctions centered on the nuclei and the floating wavefunctions for the hydrogen molecule. Chemical Physics Letters, 1971, 9, 465-466.	2.6	4
297	On the theory of the shift of F-absorption band in mixed crystals KCl(Na). Solid State Communications, 1970, 8, 275-277.	1.9	4
298	Calculations of the Electronic Structure of Colour Centres in Ionic Crystals (I). Physica Status Solidi (B): Basic Research, 1970, 40, 9-29.	1.5	14
299	Calculations of the Electronic Structure of Colour Centres in Ionic Crystals (II). Physica Status Solidi (B): Basic Research, 1970, 40, 433-460.	1.5	26
300	Theory of the Shift of the Fâ€Band in Alkali Halide Mixed Crystals. Physica Status Solidi (B): Basic Research, 1970, 40, 493-501.	1.5	5
301	Theoretical Studies on the M′â€Centre in Alkali Halide Crystals. Physica Status Solidi (B): Basic Research, 1969, 31, 401-406.	1.5	6
302	Theoretical Studies on the Fâ€Centre in Alkali Halides. Physica Status Solidi (B): Basic Research, 1969, 33, 873-878.	1.5	3
303	Model Potential Approximation in the Theory of F _{Ä€} , F _{BÌ,,} â€, and F _{CÌ,,} â€. Colour Centres in Alkali Halides. Physica Status Solidi (B): Basic Research, 1969, 35, K157.	1.5	6
304	Variational estimates of quantities in perturbation theory second approximations. Theoretical and Experimental Chemistry, 1967, 1, 383-387.	0.8	0
305	Calculation of one-electron three-center integrals. Journal of Structural Chemistry, 1965, 5, 696-701.	1.0	0