D Lozano-Castello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11597243/publications.pdf

Version: 2024-02-01

414414 279798 4,717 31 23 32 citations h-index g-index papers 32 32 32 5112 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Preparation of activated carbons from Spanish anthracite. Carbon, 2001, 39, 741-749.	10.3	608
2	Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon, 2007, 45, 293-303.	10.3	420
3	Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon, 2003, 41, 1765-1775.	10.3	414
4	Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon, 2005, 43, 2677-2684.	10.3	372
5	Advances in the study of methane storage in porous carbonaceous materials. Fuel, 2002, 81, 1777-1803.	6.4	367
6	Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007, 45, 2529-2536.	10.3	335
7	Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon, 2004, 42, 1233-1242.	10.3	317
8	Preparation of activated carbons from Spanish anthracite. Carbon, 2001, 39, 751-759.	10.3	256
9	Chemical and electrochemical characterization of porous carbon materials. Carbon, 2006, 44, 2642-2651.	10.3	211
10	Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size. Carbon, 2002, 40, 989-1002.	10.3	210
11	Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon, 2013, 62, 346-355.	10.3	198
12	Activated carbon monoliths for methane storage: influence of binder. Carbon, 2002, 40, 2817-2825.	10.3	172
13	Powdered Activated Carbons and Activated Carbon Fibers for Methane Storage:  A Comparative Study. Energy & Study, 16, 1321-1328.	5.1	124
14	Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation. Catalysis Science and Technology, 2015, 5, 364-371.	4.1	99
15	Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes. Electrochimica Acta, 2013, 89, 326-333.	5. 2	94
16	Fundamentals of methane adsorption in microporous carbons. Microporous and Mesoporous Materials, 2009, 124, 110-116.	4.4	82
17	Micropore Size Distributions of Activated Carbons and Carbon Molecular Sieves Assessed by High-Pressure Methane and Carbon Dioxide Adsorption Isotherms. Journal of Physical Chemistry B, 2002, 106, 9372-9379.	2.6	58
18	Adsorption properties of carbon molecular sieves prepared from an activated carbon by pitch pyrolysis. Carbon, 2005, 43, 1643-1651.	10.3	47

#	Article	IF	CITATIONS
19	New insights on electrochemical hydrogen storage in nanoporous carbons by in situ Raman spectroscopy. Carbon, 2014, 69, 401-408.	10.3	47
20	Characterization of pore distribution in activated carbon fibers by microbeam small angle X-ray scattering. Carbon, 2002, 40, 2727-2735.	10.3	44
21	Measuring cycle efficiency and capacitance of chemically activated carbons in propylene carbonate. Carbon, 2010, 48, 1451-1456.	10.3	40
22	Kinetics of Double-Layer Formation: Influence of Porous Structure and Pore Size Distribution. Energy &	5.1	32
23	Can highly activated carbons be prepared with a homogeneous micropore size distribution?. Fuel Processing Technology, 2002, 77-78, 325-330.	7.2	25
24	Characterization of activated carbon fiber/polyaniline materials by position-resolved microbeam small-angle X-ray scattering. Carbon, 2012, 50, 1051-1056.	10.3	23
25	Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy. Carbon, 2015, 89, 63-73.	10.3	22
26	Comparative Characterization Study of Microporous Carbons by HRTEM Image Analysis and Gas Adsorption. Journal of Physical Chemistry B, 2005, 109, 15032-15036.	2.6	20
27	Monolithic Carbon Molecular Sieves from activated bituminous coal impregnated with a slurry of coal tar pitch. Fuel Processing Technology, 2012, 95, 67-72.	7.2	20
28	In situ small angle neutron scattering study of CD4 adsorption under pressure in activated carbons. Carbon, 2001, 39, 1343-1354.	10.3	19
29	Carbon coated monoliths as support material for a lactase from Aspergillus oryzae: Characterization and design of the carbon carriers. Carbon, 2006, 44, 3053-3063.	10.3	18
30	Characteristics of an activated carbon monolith for a helium adsorption compressor. Carbon, 2010, 48, 123-131.	10.3	15
31	Relevance of porosity and surface chemistry of superactivated carbons in capacitors. Tanso, 2013, 2013, 41-47.	0.1	7