
Xiaolong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11596424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1472-1475.	2.2	97
2	Achieving cell penetration with distance-matching cysteine cross-linkers: a facile route to cell-permeable peptide dual inhibitors of Mdm2/Mdmx. Chemical Communications, 2011, 47, 9396.	4.1	79
3	PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro-Oncology, 2021, 23, 920-931.	1.2	58
4	<i>EGFR</i> Amplification Induces Increased DNA Damage Response and Renders Selective Sensitivity to Talazoparib (PARP Inhibitor) in Glioblastoma. Clinical Cancer Research, 2020, 26, 1395-1407.	7.0	26
5	Tie2–FGFR1 Interaction Induces Adaptive PI3K Inhibitor Resistance by Upregulating Aurora A/PLK1/CDK1 Signaling in Glioblastoma. Cancer Research, 2019, 79, 5088-5101.	0.9	17
6	The promise of DNA damage response inhibitors for the treatment of glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab015.	0.7	16
7	Conjugation of spermine enhances cellular uptake of the stapled peptide-based inhibitors of p53-Mdm2 interaction. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7412-7415.	2.2	14
8	Hemithyroidectomy increases the risk of disease recurrence in patients with ipsilateral multifocal papillary thyroid carcinoma. Oncology Letters, 2013, 5, 1412-1416.	1.8	14
9	Molecular Aberrance in Papillary Thyroid Microcarcinoma Bearing High Aggressiveness: Identifying a "Tibetan Mastiff Dog―From Puppies. Journal of Cellular Biochemistry, 2016, 117, 1491-1496.	2.6	10
10	Low expression of sodium iodide symporter expression in aggressive variants of papillary thyroid carcinoma. International Journal of Clinical Oncology, 2014, 19, 800-804.	2.2	9
11	EGFR suppresses p53 function by promoting p53 binding to DNA-PKcs: a noncanonical regulatory axis between EGFR and wild-type p53 in glioblastoma. Neuro-Oncology, 2022, 24, 1712-1725.	1.2	8
12	Wild-type defined gamma-secretase inhibitor sensitivity and synergistic activity with doxorubicin in GSCs. American Journal of Cancer Research, 2019, 9, 1734-1745.	1.4	3
13	BRCA1 identified as a modulator of temozolomide resistance in P53 wild-type GBM using a high-throughput shRNA-based synthetic lethality screening. American Journal of Cancer Research, 2019, 9, 2428-2441.	1.4	1
14	Multi-analysis with mathematic model of 3125 non-thyrogenous masses of the neck. Chinese-German Journal of Clinical Oncology, 2008, 7, 319-325.	0.1	0
15	DDIS-03. EGFR AMPLIFICATION INDUCED INCREASED DNA DAMAGE RESPONSE AND PREDICTED SELECTIVE SENSITIVITY TO TALAZOPARIB (PARP INHIBITOR) IN GLIOBLASTOMA STEM-LIKE CELLS. Neuro-Oncology, 2018, 20, vi69-vi69.	1.2	0
16	EXTH-11. GLIOBLASTOMA STEM CELL GROWTH DEPENDENCE ON NUTRIENTS: MORE THAN BASAL METABOLIC ACTIVITIES. Neuro-Oncology, 2018, 20, vi87-vi87.	1.2	0