Matthew J Tyska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11596166/publications.pdf

Version: 2024-02-01

		136950	161849
54	4,452	32	54
papers	citations	h-index	g-index
63	63	63	5714
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mitotic Spindle Positioning (MISP) is an actin bundler that selectively stabilizes the rootlets of epithelial microvilli. Cell Reports, 2022, 39, 110692.	6.4	14
2	Direct visualization of epithelial microvilli biogenesis. Current Biology, 2021, 31, 2561-2575.e6.	3.9	28
3	Heterophilic and homophilic cadherin interactions in intestinal intermicrovillar links are species dependent. PLoS Biology, 2021, 19, e3001463.	5.6	8
4	A heterologous in-cell assay for investigating intermicrovillar adhesion complex interactions reveals a novel protrusion length-matching mechanism. Journal of Biological Chemistry, 2020, 295, 16191-16206.	3.4	7
5	Nonmuscle myosin-2 contractility-dependent actin turnover limits the length of epithelial microvilli. Molecular Biology of the Cell, 2020, 31, 2803-2815.	2.1	28
6	The small EF-hand protein CALML4 functions as a critical myosin light chain within the intermicrovillar adhesion complex. Journal of Biological Chemistry, 2020, 295, 9281-9296.	3.4	22
7	Actin Dynamics Drive Microvillar Motility and Clustering during Brush Border Assembly. Developmental Cell, 2019, 50, 545-556.e4.	7.0	51
8	PACSIN2-dependent apical endocytosis regulates the morphology of epithelial microvilli. Molecular Biology of the Cell, 2019, 30, 2515-2526.	2.1	14
9	Profilin-Mediated Actin Allocation Regulates the Growth of Epithelial Microvilli. Current Biology, 2019, 29, 3457-3465.e3.	3.9	19
10	An alternative N-terminal fold of the intestine-specific annexin A13a induces dimerization and regulates membrane-binding. Journal of Biological Chemistry, 2019, 294, 3454-3463.	3.4	11
11	Brush border protocadherin CDHR2 promotes the elongation and maximized packing of microvilli in vivo. Molecular Biology of the Cell, 2019, 30, 108-118.	2.1	29
12	IRTKS (BAIAP2L1) Elongates Epithelial Microvilli Using EPS8-Dependent and Independent Mechanisms. Current Biology, 2018, 28, 2876-2888.e4.	3.9	58
13	Structure of Myo7b/USH1C complex suggests a general PDZ domain binding mode by MyTH4-FERM myosins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3776-E3785.	7.1	36
14	Disruption of Rab8a and Rab11a causes formation of basolateral microvilli in neonatal enteropathy. Journal of Cell Science, 2017, 130, 2491-2505.	2.0	21
15	Shear stress induces noncanonical autophagy in intestinal epithelial monolayers. Molecular Biology of the Cell, 2017, 28, 3043-3056.	2.1	35
16	MyTH4-FERM myosins in the assembly and maintenance of actin-based protrusions. Current Opinion in Cell Biology, 2017, 44, 68-78.	5.4	33
17	Brush Border Destruction by Enterohemorrhagic Escherichia coli (EHEC): New Insights From Organoid Culture. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 7-8.	4.5	4
18	Myosin-7b Promotes Distal Tip Localization of the Intermicrovillar Adhesion Complex. Current Biology, 2016, 26, 2717-2728.	3.9	51

#	Article	IF	CITATIONS
19	Cortactin promotes exosome secretion by controlling branched actin dynamics. Journal of Cell Biology, 2016, 214, 197-213.	5.2	226
20	ANKS4B Is Essential for Intermicrovillar Adhesion Complex Formation. Developmental Cell, 2016, 36, 190-200.	7.0	55
21	Cordon bleu promotes the assembly of brush border microvilli. Molecular Biology of the Cell, 2015, 26, 3803-3815.	2.1	38
22	Shaping the intestinal brush border. Journal of Cell Biology, 2014, 207, 441-451.	5.2	210
23	Dynamics of brush border remodeling induced by enteropathogenic <i>E. coli</i> . Gut Microbes, 2014, 5, 504-516.	9.8	11
24	Motor and Tail Homology 1 (TH1) Domains Antagonistically Control Myosin-1 Dynamics. Biophysical Journal, 2014, 106, 649-658.	0.5	11
25	Detection of Rare Antigen-Presenting Cells through T Cell-Intrinsic Meandering Motility, Mediated by Myo1g. Cell, 2014, 158, 492-505.	28.9	120
26	Intestinal Brush Border Assembly Driven by Protocadherin-Based Intermicrovillar Adhesion. Cell, 2014, 157, 433-446.	28.9	159
27	Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease. Journal of Clinical Investigation, 2014, 124, 2947-2962.	8.2	96
28	Exosome Secretion Is Enhanced by Invadopodia and Drives Invasive Behavior. Cell Reports, 2013, 5, 1159-1168.	6.4	428
29	Extracellular vesicles: communication, coercion, and conditioning. Molecular Biology of the Cell, 2013, 24, 1253-1259.	2.1	87
30	Ready…aim…fire into the lumen. Gut Microbes, 2012, 3, 460-462.	9.8	14
31	Myosin-1A Targets to Microvilli Using Multiple Membrane Binding Motifs in the Tail Homology 1 (TH1) Domain. Journal of Biological Chemistry, 2012, 287, 13104-13115.	3.4	37
32	Constitutively active ezrin increases membrane tension, slows migration, and impedes endothelial transmigration of lymphocytes in vivo in mice. Blood, 2012, 119, 445-453.	1.4	101
33	Membrane-Bound Myo1c Powers Asymmetric Motility of Actin Filaments. Current Biology, 2012, 22, 1688-1692.	3.9	58
34	Enterocyte Microvillus-Derived Vesicles Detoxify Bacterial Products and Regulate Epithelial-Microbial Interactions. Current Biology, 2012, 22, 627-631.	3.9	100
35	Expression and localization of myosin-1d in the developing nervous system. Brain Research, 2012, 1440, 9-22.	2.2	21
36	Amphiregulin Exosomes Increase Cancer Cell Invasion. Current Biology, 2011, 21, 779-786.	3.9	309

#	Article	IF	CITATIONS
37	Proteomic analysis of the enterocyte brush border. American Journal of Physiology - Renal Physiology, 2011, 300, G914-G926.	3.4	84
38	Myosin motor function: the ins and outs of actin-based membrane protrusions. Cellular and Molecular Life Sciences, 2010, 67, 1239-1254.	5.4	91
39	Leveraging the membrane – cytoskeleton interface with myosin-1. Trends in Cell Biology, 2010, 20, 418-426.	7.9	130
40	Differential Localization and Dynamics of Class I Myosins in the Enterocyte Microvillus. Molecular Biology of the Cell, 2010, 21, 970-978.	2.1	48
41	Myosin-1a. Communicative and Integrative Biology, 2010, 3, 64-66.	1.4	9
42	The enterocyte microvillus is a vesicle-generating organelle. Journal of Cell Biology, 2009, 185, 1285-1298.	5.2	199
43	Control of cell membrane tension by myosin-l. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11972-11977.	7.1	164
44	Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. Journal of Cell Biology, 2007, 177, 671-681.	5.2	84
45	Myosin at work: Motor adaptations for a variety of cellular functions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 615-630.	4.1	84
46	Myosin-1a Is Critical for Normal Brush Border Structure and Composition. Molecular Biology of the Cell, 2005, 16, 2443-2457.	2.1	168
47	A role for myosin-1A in the localization of a brush border disaccharidase. Journal of Cell Biology, 2004, 165, 395-405.	5.2	71
48	Myosin-V motility: these levers were made for walking. Trends in Cell Biology, 2003, 13, 447-451.	7.9	25
49	Myosin-IXb Is a Single-headed and Processive Motor. Journal of Biological Chemistry, 2002, 277, 11679-11683.	3.4	75
50	The myosin power stroke. Cytoskeleton, 2002, 51, 1-15.	4.4	172
51	The Yeast Class V Myosins, Myo2p and Myo4p, Are Nonprocessive Actin-Based Motors. Journal of Cell Biology, 2001, 153, 1121-1126.	5.2	123
52	R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. Journal of Muscle Research and Cell Motility, 2000, 21, 609-620.	2.0	124
53	Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms. Journal of Physiology, 1999, 519, 669-678.	2.9	120
54	A 7-amino-acid insert in the heavy chain nucleotide binding loop alters the kinetics of smooth muscle myosin in the laser trap. Journal of Muscle Research and Cell Motility, 1998, 19, 825-837.	2.0	126