List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11594996/publications.pdf Version: 2024-02-01

ΡΙΤΛ Ε CHEN

#	Article	IF	CITATIONS
1	Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 2020, 583, 290-295.	13.7	1,695
2	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	13.7	956
3	Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.	15.2	838
4	SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nature Immunology, 2020, 21, 1327-1335.	7.0	743
5	Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host and Microbe, 2021, 29, 477-488.e4.	5.1	700
6	SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature, 2021, 596, 109-113.	13.7	586
7	Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science, 2020, 370, 950-957.	6.0	504
8	A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell, 2020, 182, 744-753.e4.	13.5	486
9	De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020, 370, 426-431.	6.0	464
10	Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine, 2020, 26, 1422-1427.	15.2	450
11	A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell, 2020, 183, 169-184.e13.	13.5	446
12	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. Cell Host and Microbe, 2020, 28, 475-485.e5.	5.1	380
13	The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell, 2021, 184, 2183-2200.e22.	13.5	331
14	Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 2021, 184, 2316-2331.e15.	13.5	321
15	Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell, 2021, 184, 1804-1820.e16.	13.5	297
16	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	5.9	237
17	In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.	13.7	222
18	Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology, 2020, 548, 39-48.	1.1	209

#	Article	IF	CITATIONS
19	A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. Journal of Immunology, 2020, 205, 915-922.	0.4	186
20	Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Reports, 2017, 19, 719-732.	2.9	160
21	Replication-Competent Vesicular Stomatitis Virus Vaccine Vector Protects against SARS-CoV-2-Mediated Pathogenesis in Mice. Cell Host and Microbe, 2020, 28, 465-474.e4.	5.1	156
22	Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20803-20813.	3.3	154
23	Single-Chain Soluble BG505.SOSIP gp140 Trimers as Structural and Antigenic Mimics of Mature Closed HIV-1 Env. Journal of Virology, 2015, 89, 5318-5329.	1.5	125
24	SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity, 2021, 54, 1304-1319.e9.	6.6	115
25	Association between SARS-CoV-2 Neutralizing Antibodies and Commercial Serological Assays. Clinical Chemistry, 2020, 66, 1538-1547.	1.5	112
26	A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Reports Medicine, 2021, 2, 100230.	3.3	99
27	SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell Reports, 2021, 37, 110143.	2.9	94
28	An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Reports, 2021, 36, 109452.	2.9	90
29	A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.	6.6	79
30	A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Science Translational Medicine, 2022, 14, .	5.8	73
31	Soluble Prefusion Closed DS-SOSIP.664-Env Trimers of Diverse HIV-1 Strains. Cell Reports, 2017, 21, 2992-3002.	2.9	69
32	Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 2022, 14, eabn1252.	5.8	68
33	Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Reports, 2021, 36, 109604.	2.9	67
34	Two-Component Ferritin Nanoparticles for Multimerization of Diverse Trimeric Antigens. ACS Infectious Diseases, 2018, 4, 788-796.	1.8	65
35	A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection. Nature Immunology, 2019, 20, 1291-1298.	7.0	60
36	Immunogenicity of a Prefusion HIV-1 Envelope Trimer in Complex with a Quaternary-Structure-Specific Antibody. Journal of Virology, 2016, 90, 2740-2755.	1.5	58

#	Article	IF	CITATIONS
37	SARS-CoV-2 Causes Lung Infection without Severe Disease in Human ACE2 Knock-In Mice. Journal of Virology, 2022, 96, JVI0151121.	1.5	58
38	Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Reports Medicine, 2021, 2, 100313.	3.3	56
39	Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Science Translational Medicine, 2022, 14, .	5.8	55
40	A vaccine-induced public antibody protects against SARS-CoV-2 and emerging variants. Immunity, 2021, 54, 2159-2166.e6.	6.6	52
41	The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to other variants. Cell Host and Microbe, 2022, 30, 53-68.e12.	5.1	52
42	Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain nanoparticle vaccine in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
43	Protective Efficacy of Nucleic Acid Vaccines Against Transmission of Zika Virus During Pregnancy in Mice. Journal of Infectious Diseases, 2019, 220, 1577-1588.	1.9	39
44	Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease. Cell Host and Microbe, 2021, 29, 1151-1161.e5.	5.1	36
45	Dengue mouse models for evaluating pathogenesis and countermeasures. Current Opinion in Virology, 2020, 43, 50-58.	2.6	32
46	A Simplified Quantitative Real-Time PCR Assay for Monitoring SARS-CoV-2 Growth in Cell Culture. MSphere, 2020, 5, .	1.3	32
47	Tetravalent SARS-CoV-2 Neutralizing Antibodies Show Enhanced Potency and Resistance to Escape Mutations. Journal of Molecular Biology, 2021, 433, 167177.	2.0	31
48	Reduced antibody activity against SARS-CoV-2 B.1.617.2 delta virus in serum of mRNA-vaccinated individuals receiving tumor necrosis factor-α inhibitors. Med, 2021, 2, 1327-1341.e4.	2.2	31
49	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. SSRN Electronic Journal, 2020, , 3606354.	0.4	16
50	Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD. Cell Reports, 2021, 37, 109881.	2.9	14
51	An antibody targeting the N-terminal domain of SARS-CoV-2 disrupts the spike trimer. Journal of Clinical Investigation, 2022, 132, .	3.9	14
52	Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Science Translational Medicine, 2021, , eabm3302.	5.8	13
53	A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med, 2022, 3, 188-203.e4.	2.2	11
54	Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nature Communications, 2022, 13, 1638.	5.8	11

#	Article	IF	CITATIONS
55	mRNA vaccine boosting enhances antibody responses against SARS-CoV-2 Omicron variant in in in individuals with antibody deficiency syndromes. Cell Reports Medicine, 2022, 3, 100653.	3.3	10
56	Residues in the PB2 and PA genes contribute to the pathogenicity of avian H7N3 influenza A virus in DBA/2 mice. Virology, 2016, 494, 89-99.	1.1	9
57	A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates Science Translational Medicine, 2021, , eabi5735.	5.8	8
58	Assessment of serological assays for identifying high titer convalescent plasma. Transfusion, 2021, 61, 2658-2667.	0.8	7
59	Standardized two-step testing of antibody activity in COVID-19 convalescent plasma. IScience, 2022, 25, 103602.	1.9	6
60	Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host and Microbe, 2021, 29, 1634-1648.e5.	5.1	5
61	Standardized Two-Step Testing of Antibody Activity in COVID-19 Convalescent Plasma. SSRN Electronic Journal, 0, , .	0.4	2