
## Atal Shivhare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11592460/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Stable and recyclable Au <sub>25</sub> clusters for the reduction of 4-nitrophenol. Chemical Communications, 2013, 49, 276-278.                                                                                                                                                                                                                | 4.1 | 134       |
| 2  | Following the Thermal Activation of Au <sub>25</sub> (SR) <sub>18</sub> Clusters for Catalysis by<br>X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 20007-20016.                                                                                                                                                   | 3.1 | 66        |
| 3  | Hydrogenolysis of Lignin-Derived Aromatic Ethers over Heterogeneous Catalysts. ACS Sustainable<br>Chemistry and Engineering, 2021, 9, 3379-3407.                                                                                                                                                                                               | 6.7 | 59        |
| 4  | An Account of the Catalytic Transfer Hydrogenation and Hydrogenolysis of Carbohydrateâ€Derived<br>Renewable Platform Chemicals over Nonâ€Precious Heterogeneous Metal Catalysts. ChemCatChem, 2021,<br>13, 59-80.                                                                                                                              | 3.7 | 36        |
| 5  | Metal phosphate catalysts to upgrade lignocellulose biomass into value-added chemicals and biofuels.<br>Green Chemistry, 2021, 23, 3818-3841.                                                                                                                                                                                                  | 9.0 | 33        |
| 6  | Synthesis of sinter-resistant Au@silica catalysts derived from Au <sub>25</sub> clusters. Catalysis<br>Science and Technology, 2017, 7, 272-280.                                                                                                                                                                                               | 4.1 | 31        |
| 7  | Metal–Acid Synergy: Hydrodeoxygenation of Anisole over Pt/Alâ€5BAâ€15. ChemSusChem, 2020, 13,<br>4945-4953.                                                                                                                                                                                                                                    | 6.8 | 31        |
| 8  | Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure. Physical Chemistry Chemical Physics, 2016, 18, 19621-19630.                                                                                                                                                     | 2.8 | 25        |
| 9  | Supported bimetallic AuPd clusters using activated Au25 clusters. Catalysis Today, 2017, 280, 259-265.                                                                                                                                                                                                                                         | 4.4 | 19        |
| 10 | Isolation of Carboxylic Acid-Protected Au <sub>25</sub> Clusters Using a Borohydride Purification<br>Strategy. Langmuir, 2015, 31, 1835-1841.                                                                                                                                                                                                  | 3.5 | 16        |
| 11 | Following the Reactivity of<br>Au <sub>25</sub> (SC <sub>8</sub> H <sub>9</sub> ) <sub>18</sub> <sup>–</sup> Clusters with<br>Pd <sup>2+</sup> and Ag <sup>+</sup> Ions Using <i>in Situ</i> X-ray Absorption Spectroscopy: A Tale<br>of Two Metals. Journal of Physical Chemistry C, 2015, 119, 23279-23284.                                  | 3.1 | 15        |
| 12 | Catalytic interplay of metal ions (Cu <sup>2+</sup> , Ni <sup>2+</sup> , and Fe <sup>2+</sup> ) in<br>MFe <sub>2</sub> O <sub>4</sub> inverse spinel catalysts for enhancing the activity and selectivity<br>during selective transfer hydrogenation of furfural into 2-methylfuran. Catalysis Science and<br>Technology, 2022, 12, 4857-4870. | 4.1 | 14        |
| 13 | Metal and solvent-dependent activity of spinel-based catalysts for the selective hydrogenation and rearrangement of furfural. Sustainable Energy and Fuels, 2021, 5, 3191-3204.                                                                                                                                                                | 4.9 | 12        |
| 14 | Au 25 clusters as precursors for the synthesis of AuPd bimetallic nanoparticles with isolated atomic<br>Pd-surface sites. Molecular Catalysis, 2018, 457, 33-40.                                                                                                                                                                               | 2.0 | 6         |
| 15 | The Sizeâ€Dependent Catalytic Performances of Supported Metal Nanoparticles and Single Atoms for the<br>Upgrading of Biomassâ€Derived 5â€Hydroxymethylfurfural, Furfural, and Levulinic acid. ChemCatChem,<br>2022–14                                                                                                                          | 3.7 | 3         |

2