Maaike Everts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1159128/publications.pdf

Version: 2024-02-01

44 papers 2,115 citations

257450 24 h-index 265206 42 g-index

44 all docs

44 docs citations

times ranked

44

2666 citing authors

#	Article	IF	CITATIONS
1	Covalently Linked Au Nanoparticles to a Viral Vector:  Potential for Combined Photothermal and Gene Cancer Therapy. Nano Letters, 2006, 6, 587-591.	9.1	250
2	Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2005, 1, 326-345.	3.3	213
3	Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Research and Treatment, 2007, 105, 157-167.	2.5	194
4	Quantum Dots as Multimodal Photoacoustic and Photothermal Contrast Agents. Nano Letters, 2008, 8, 3953-3958.	9.1	141
5	Preparation and Functional Evaluation of RGD-Modified Proteins as $\hat{l}\pm v\hat{l}^2$ 3Integrin Directed Therapeutics. Bioconjugate Chemistry, 2002, 13, 128-135.	3.6	134
6	Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Therapy, 2006, 13, 830-844.	4.6	115
7	Selective Intracellular Delivery of Dexamethasone into Activated Endothelial Cells Using an E-Selectin-Directed Immunoconjugate. Journal of Immunology, 2002, 168, 883-889.	0.8	85
8	Fluorescently Labeled Adenovirus with pIX-EGFP for Vector Detection. Molecular Imaging, 2004, 3, 105-116.	1.4	85
9	Transductional Targeting of Adenoviral Cancer Gene Therapy. Current Gene Therapy, 2004, 4, 337-346.	2.0	75
10	In vitro cellular handling and in vivo targeting of E-selectin-directed immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium. Pharmaceutical Research, 2003, 20, 64-72.	3 . 5	65
11	Effect of adenoviral mediated overexpression of fibromodulin on human dermal fibroblasts and scar formation in full-thickness incisional wounds. Journal of Molecular Medicine, 2007, 85, 481-496.	3.9	51
12	Mesothelin-mediated targeting of adenoviral vectors for ovarian cancer gene therapy. Gene Therapy, 2005, 12, 187-193.	4.5	49
13	Directing adenovirus across the blood–brain barrier via melanotransferrin (P97) transcytosis pathway in an in vitro model. Gene Therapy, 2007, 14, 523-532.	4.5	45
14	Adenovirus Tumor Targeting and Hepatic Untargeting by a Coxsackie/Adenovirus Receptor Ectodomain Anti–Carcinoembryonic Antigen Bispecific Adapter. Cancer Research, 2007, 67, 5354-5361.	0.9	43
15	A human adenoviral vector with a chimeric fiber from canine adenovirus type 1 results in novel expanded tropism for cancer gene therapy. Gene Therapy, 2005, 12, 1696-1706.	4.5	38
16	Identification of Small Molecule Inhibitors of Human Cytochrome c Oxidase That Target Chemoresistant Glioma Cells. Journal of Biological Chemistry, 2016, 291, 24188-24199.	3.4	37
17	Genetic Replacement of the Adenovirus Shaft Fiber Reduces Liver Tropism in Ovarian Cancer Gene Therapy. Human Gene Therapy, 2004, 15, 509-518.	2.7	36
18	Gene transfer to carcinoma of the breast with fiber-modified adenoviral vectors in a tissue slice model system. Cancer Biology and Therapy, 2005, 4, 1203-1210.	3.4	31

#	Article	IF	Citations
19	The natural history of a novel, systemic, disseminated model of syngeneic mouse B-cell lymphoma. Leukemia and Lymphoma, 2005, 46, 1627-1638.	1.3	31
20	Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system. Breast Cancer Research, 2005, 7, R1141-52.	5.0	30
21	Combined Transductional Untargeting/Retargeting and Transcriptional Restriction Enhances Adenovirus Gene Targeting and Therapy for Hepatic Colorectal Cancer Tumors. Cancer Research, 2009, 69, 554-564.	0.9	29
22	An Adenoviral Platform for Selective Selfâ€Assembly and Targeted Delivery of Nanoparticles. Small, 2008, 4, 262-269.	10.0	27
23	Selective induction of tumor-associated antigens in murine pulmonary vasculature using double-targeted adenoviral vectors. Gene Therapy, 2005, 12, 1042-1048.	4.5	26
24	Combination of viral biology and nanotechnology: new applications in nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 200-206.	3.3	25
25	Delivery of pharmacologically active dexamethasone into activated endothelial cells by dexamethasone–anti-E-selectin immunoconjugate. Biochemical Pharmacology, 2003, 65, 1729-1739.	4.4	24
26	Accelerating Drug Development: Antiviral Therapies for Emerging Viruses as a Model. Annual Review of Pharmacology and Toxicology, 2017, 57, 155-169.	9.4	23
27	Cellular handling of a dexamethasone-anti-E-selectin immunoconjugate by activated endothelial cells: comparison with free dexamethasone. Pharmaceutical Research, 2002, 19, 1730-1735.	3.5	22
28	Chimeric adenoviral vectors incorporating a fiber of human adenovirus 3 efficiently mediate gene transfer into prostate cancer cells. Prostate, 2010, 70, 362-376.	2.3	22
29	Employment of liver tissue slice analysis to assay hepatotoxicity linked to replicative and nonreplicative adenoviral agents. Cancer Gene Therapy, 2006, 13, 606-618.	4.6	21
30	Thermal scalpel to target cancer. Expert Review of Medical Devices, 2007, 4, 131-136.	2.8	21
31	Characterization of infectivity of knob-modified adenoviral vectors in glioma. Cancer Biology and Therapy, 2008, 7, 786-793.	3.4	21
32	In vivo analysis of a genetically modified adenoviral vector targeted to human CD40 using a novel transient transgenic model. Journal of Gene Medicine, 2005, 7, 1517-1525.	2.8	20
33	Development of vasculature targeting strategies for the treatment of cancer and chronic inflammatory diseases. Biotechnology Annual Review, 2002, 8, 133-165.	2.1	15
34	Selective Transduction of Mature DC in Human Skin and Lymph Nodes by CD80/CD86-targeted Fiber-modified Adenovirus-5/3. Journal of Immunotherapy, 2009, 32, 895-906.	2.4	14
35	An adenoviral vector expressing human adenovirus 5 and 3 fiber proteins for targeting heterogeneous cell populations. Virology, 2010, 407, 196-205.	2.4	14
36	Enhanced Gene Delivery to Human Primary Endothelial Cells Using Tropism-Modified Adenovirus Vectors. The Open Gene Therapy Journal, 2008, 1, 7-11.	1.2	13

#	Article	IF	CITATIONS
37	Academic Medical Product Development: An Emerging Alliance of Technology Transfer Organizations and the CTSA. Clinical and Translational Science, 2014, 7, 456-464.	3.1	9
38	Comparison of E-selectin expression at mRNA and protein levels in murine models of inflammation. Inflammation Research, 2003, 52, 512-518.	4.0	8
39	Limitations of Adenoviral Vector-Mediated Delivery of Gold Nanoparticles to Tumors for Hyperthermia Induction. The Open Nanomedicine Journal, 2009, 2, 27-35.	1.6	5
40	The Alabama Drug Discovery Alliance: A Collaborative Partnership to Facilitate Academic Drug Discovery. Pharmaceutical Research, 2011, 28, 1454-1459.	3.5	4
41	Consortia's critical role in developing medical countermeasures for re-emerging viral infections: a USA perspective. Future Virology, 2016, 11, 187-195.	1.8	2
42	Targeted therapies directed to tumor-associated antigens. Drugs of the Future, 2005, 30, 1067.	0.1	2
43	Viruses in Pharmaceutical Research: Swiss Army Knives for the Prevention and Treatment of Disease. Molecular Pharmaceutics, $2011, 8, 1-2$.	4.6	O
44	"Design of Poly(ethylene glycol)-Polycaprolactone Diblock Micelles with RGD Targeting Ligands and Embedded Iron Oxide Nanoparticles for Thermally-activated Release†Materials Research Society Symposia Proceedings, 2012, 1416, 13.	0.1	0