
Neil D Treat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11591032/publications.pdf Version: 2024-02-01

NEIL D TREAT

#	Article	IF	CITATIONS
1	Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend. Advanced Energy Materials, 2011, 1, 82-89.	19.5	572
2	A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nature Chemistry, 2010, 2, 138-145.	13.6	206
3	Polymer-Fullerene Miscibility: A Metric for Screening New Materials for High-Performance Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 15869-15879.	13.7	196
4	High Electron Mobility Thinâ€Film Transistors Based on Solutionâ€Processed Semiconducting Metal Oxide Heterojunctions and Quasiâ€Superlattices. Advanced Science, 2015, 2, 1500058.	11.2	134
5	Highâ€Efficiency Organic Photovoltaic Cells Based on the Solutionâ€Processable Hole Transporting Interlayer Copper Thiocyanate (CuSCN) as a Replacement for PEDOT:PSS. Advanced Energy Materials, 2015, 5, 1401529.	19.5	133
6	Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents. Nature Materials, 2013, 12, 628-633.	27.5	131
7	A Modular Strategy for Fully Conjugated Donor–Acceptor Block Copolymers. Journal of the American Chemical Society, 2012, 134, 16040-16046.	13.7	124
8	Remarkable Order of a High-Performance Polymer. Nano Letters, 2013, 13, 2522-2527.	9.1	120
9	A Novel Alkylated Indacenodithieno[3,2â€b]thiopheneâ€Based Polymer for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 3922-3927.	21.0	117
10	1,4â€Fullerene Derivatives: Tuning the Properties of the Electron Transporting Layer in Bulkâ€Heterojunction Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 5166-5169.	13.8	100
11	Phase Separation in Bulk Heterojunctions of Semiconducting Polymers and Fullerenes for Photovoltaics. Annual Review of Physical Chemistry, 2014, 65, 59-81.	10.8	99
12	Ultralow thermal conductivity of fullerene derivatives. Physical Review B, 2013, 88, .	3.2	98
13	In situ measurement of power conversion efficiency and molecular ordering during thermal annealing in P3HT:PCBM bulk heterojunction solar cells. Journal of Materials Chemistry, 2011, 21, 15224.	6.7	84
14	Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2017, 7, 1602600.	19.5	78
15	Highly efficient photochemical upconversion in a quasi-solid organogel. Journal of Materials Chemistry C, 2015, 3, 616-622.	5.5	72
16	Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends. Advanced Energy Materials, 2014, 4, 1301437.	19.5	65
17	Temperature Dependence of the Diffusion Coefficient of PCBM in Poly(3-hexylthiophene). Macromolecules, 2013, 46, 1002-1007.	4.8	63
18	Deep Energetic Trap States in Organic Photovoltaic Devices. Advanced Energy Materials, 2012, 2, 111-119.	19.5	61

#	Article	IF	CITATIONS
19	Using Molecular Design to Increase Hole Transport: Backbone Fluorination in the Benchmark Material		

3

NEIL D TREAT

#	Article	IF	CITATIONS
37	Diels–Alders adducts of C ₆₀ and esters of 3-(1-indenyl)-propionic acid: alternatives for [60]PCBM in polymer:fullerene solar cells. Chemical Communications, 2015, 51, 8126-8129.	4.1	17
38	Significance of miscibility in multidonor bulk heterojunction solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 237-246.	2.1	16
39	Controlling the Solidification of Organic Photovoltaic Blends with Nucleating Agents. Organic Photonics and Photovoltaics, 2014, 2, .	1.3	4
40	<i>In situ</i> current voltage measurements for optimization of a novel fullerene acceptor in bulk heterojunction photovoltaics. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 174-179.	2.1	3
41	Robust Processing of Small-Molecule:Fullerene Organic Solar Cells via Use of Nucleating Agents. ACS Applied Energy Materials, 2018, 1, 1973-1980.	5.1	2
42	ORGANIC SEMICONDUCTORS: MANIPULATION AND CONTROL OF THE MICROSTRUCTURE OF ACTIVE LAYERS. Materials and Energy, 2016, , 159-193.	0.1	1
43	Nanostructures: Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends (Adv. Energy Mater. 9/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	19.5	0