
Goran Strbac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1159089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Demand side management: Benefits and challenges. Energy Policy, 2008, 36, 4419-4426.	8.8	1,397
2	Distribution System State Estimation Using an Artificial Neural Network Approach for Pseudo Measurement Modeling. IEEE Transactions on Power Systems, 2012, 27, 1888-1896.	6.5	261
3	Multi-time period combined gas and electricity network optimisation. Electric Power Systems Research, 2008, 78, 1265-1279.	3.6	256
4	Stochastic Scheduling With Inertia-Dependent Fast Frequency Response Requirements. IEEE Transactions on Power Systems, 2016, 31, 1557-1566.	6.5	235
5	Whole-Systems Assessment of the Value of Energy Storage in Low-Carbon Electricity Systems. IEEE Transactions on Smart Grid, 2014, 5, 1098-1109.	9.0	232
6	Value of Bulk Energy Storage for Managing Wind Power Fluctuations. IEEE Transactions on Energy Conversion, 2007, 22, 197-205.	5.2	231
7	Decentralized Control of Thermostatic Loads for Flexible Demand Response. IEEE Transactions on Control Systems Technology, 2015, 23, 1685-1700.	5.2	212
8	Impact of wind generation on the operation and development of the UK electricity systems. Electric Power Systems Research, 2007, 77, 1214-1227.	3.6	197
9	Deep Reinforcement Learning for Strategic Bidding in Electricity Markets. IEEE Transactions on Smart Grid, 2020, 11, 1343-1355.	9.0	149
10	Using Bayesian Deep Learning to Capture Uncertainty for Residential Net Load Forecasting. IEEE Transactions on Power Systems, 2020, 35, 188-201.	6.5	144
11	A MILP model for optimising multi-service portfolios of distributed energy storage. Applied Energy, 2015, 137, 554-566.	10.1	142
12	Decentralized Participation of Flexible Demand in Electricity Markets—Part I: Market Mechanism. IEEE Transactions on Power Systems, 2013, 28, 3658-3666.	6.5	138
13	Decentralized Participation of Flexible Demand in Electricity Markets—Part II: Application With Electric Vehicles and Heat Pump Systems. IEEE Transactions on Power Systems, 2013, 28, 3667-3674.	6.5	133
14	Smart control for minimizing distribution network reinforcement cost due to electrification. Energy Policy, 2013, 52, 76-84.	8.8	123
15	Assessment of the Role and Value of Frequency Response Support From Wind Plants. IEEE Transactions on Sustainable Energy, 2016, 7, 586-595.	8.8	123
16	Microgrids: Enhancing the Resilience of the European Megagrid. IEEE Power and Energy Magazine, 2015, 13, 35-43.	1.6	119
17	On microgrids and resilience: A comprehensive review on modeling and operational strategies. Renewable and Sustainable Energy Reviews, 2020, 134, 110313.	16.4	116
18	Model-Free Real-Time Autonomous Control for a Residential Multi-Energy System Using Deep Reinforcement Learning. IEEE Transactions on Smart Grid, 2020, 11, 3068-3082.	9.0	112

#	Article	IF	CITATIONS
19	Simultaneous Scheduling of Multiple Frequency Services in Stochastic Unit Commitment. IEEE Transactions on Power Systems, 2019, 34, 3858-3868.	6.5	111
20	Economic and Environmental Benefits of Dynamic Demand in Providing Frequency Regulation. IEEE Transactions on Smart Grid, 2013, 4, 2036-2048.	9.0	109
21	Distributed Generation. , 2010, , .		105
22	Efficient Stochastic Scheduling for Simulation of Wind-Integrated Power Systems. IEEE Transactions on Power Systems, 2012, 27, 323-334.	6.5	100
23	A Recursive Bayesian Approach for Identification of Network Configuration Changes in Distribution System State Estimation. IEEE Transactions on Power Systems, 2010, 25, 1329-1336.	6.5	93
24	A Deep Learning-Based Feature Extraction Framework for System Security Assessment. IEEE Transactions on Smart Grid, 2019, 10, 5007-5020.	9.0	92
25	Effect of Battery Degradation on Multi-Service Portfolios of Energy Storage. IEEE Transactions on Sustainable Energy, 2016, 7, 1718-1729.	8.8	90
26	Total cost estimates for large-scale wind scenarios in UK. Energy Policy, 2004, 32, 1949-1956.	8.8	89
27	Valuation of Flexible Transmission Investment Options Under Uncertainty. IEEE Transactions on Power Systems, 2015, 30, 1047-1055.	6.5	87
28	Advanced Control of Thermostatic Loads for Rapid Frequency Response in Great Britain. IEEE Transactions on Power Systems, 2017, 32, 2106-2117.	6.5	85
29	C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data. IEEE Transactions on Power Systems, 2017, 32, 2382-2393.	6.5	80
30	Design of a Hybrid AC/DC Microgrid Using HOMER Pro: Case Study on an Islanded Residential Application. Inventions, 2018, 3, 55.	2.5	79
31	Inertial Response From Offshore Wind Farms Connected Through DC Grids. IEEE Transactions on Power Systems, 2015, 30, 1518-1527.	6.5	78
32	Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach. Applied Energy, 2021, 292, 116940.	10.1	70
33	Benefits of flexibility from smart electrified transportation and heating in the future UK electricity system. Applied Energy, 2016, 167, 420-431.	10.1	68
34	Decentralized Coordination of Microgrids With Flexible Demand and Energy Storage. IEEE Transactions on Sustainable Energy, 2014, 5, 1406-1414.	8.8	63
35	Clustering-Based Residential Baseline Estimation: A Probabilistic Perspective. IEEE Transactions on Smart Grid, 2019, 10, 6014-6028.	9.0	62
36	Efficacy of options to address balancing challenges: Integrated gas and electricity perspectives. Applied Energy, 2017, 190, 181-190.	10.1	60

#	Article	IF	CITATIONS
37	Implementation of a Massively Parallel Dynamic Security Assessment Platform for Large-Scale Grids. IEEE Transactions on Smart Grid, 2017, 8, 1417-1426.	9.0	60
38	From Optimization-Based Machine Learning to Interpretable Security Rules for Operation. IEEE Transactions on Power Systems, 2019, 34, 3826-3836.	6.5	60
39	Whole-System Assessment of the Benefits of Integrated Electricity and Heat System. IEEE Transactions on Smart Grid, 2019, 10, 1132-1145.	9.0	59
40	A Deep Reinforcement Learning Method for Pricing Electric Vehicles With Discrete Charging Levels. IEEE Transactions on Industry Applications, 2020, 56, 5901-5912.	4.9	58
41	A Scalable Privacy-Preserving Multi-Agent Deep Reinforcement Learning Approach for Large-Scale Peer-to-Peer Transactive Energy Trading. IEEE Transactions on Smart Grid, 2021, 12, 5185-5200.	9.0	58
42	A Planning Model for a Hybrid AC–DC Microgrid Using a Novel GA/AC OPF Algorithm. IEEE Transactions on Power Systems, 2020, 35, 227-237.	6.5	57
43	Supporting security and adequacy in future energy systems: The need to enhance long-term energy system models to better treat issues related to variability. International Journal of Energy Research, 2015, 39, 377-396.	4.5	56
44	Leaky storage model for optimal multiâ€service allocation of thermostatic loads. IET Generation, Transmission and Distribution, 2016, 10, 585-593.	2.5	53
45	Multi-Period and Multi-Spatial Equilibrium Analysis in Imperfect Electricity Markets: A Novel Multi-Agent Deep Reinforcement Learning Approach. IEEE Access, 2019, 7, 130515-130529.	4.2	53
46	Understanding the Benefits of Dynamic Line Rating Under Multiple Sources of Uncertainty. IEEE Transactions on Power Systems, 2018, 33, 3306-3314.	6.5	52
47	Co-Optimization of Generation Expansion Planning and Electric Vehicles Flexibility. IEEE Transactions on Smart Grid, 2016, 7, 1609-1619.	9.0	51
48	Strategic Distribution Network Planning With Smart Grid Technologies. IEEE Transactions on Smart Grid, 2017, 8, 2656-2664.	9.0	51
49	Investigating the Ability of Demand Shifting to Mitigate Electricity Producers' Market Power. IEEE Transactions on Power Systems, 2018, 33, 3800-3811.	6.5	51
50	Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids. Applied Energy, 2022, 305, 117921.	10.1	51
51	Impact of Uncertainties on Resilient Operation of Microgrids: A Data-Driven Approach. IEEE Access, 2019, 7, 14924-14937.	4.2	50
52	Integrated North Sea grids: The costs, the benefits and their distribution between countries. Energy Policy, 2017, 101, 28-41.	8.8	48
53	Decarbonization of Electricity Systems in Europe: Market Design Challenges. IEEE Power and Energy Magazine, 2021, 19, 53-63.	1.6	47
54	Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems. Renewable and Sustainable Energy Reviews, 2021, 147, 111176.	16.4	46

#	Article	IF	CITATIONS
55	Transmission Network Investment With Probabilistic Security and Corrective Control. IEEE Transactions on Power Systems, 2013, 28, 3935-3944.	6.5	44
56	An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources. Energy, 2018, 145, 871-885.	8.8	44
57	Resilience Oriented Planning of Urban Multi-Energy Systems With Generalized Energy Storage Sources. IEEE Transactions on Power Systems, 2022, 37, 2906-2918.	6.5	44
58	Price-Based Schemes for Distributed Coordination of Flexible Demand in the Electricity Market. IEEE Transactions on Smart Grid, 2017, 8, 3104-3116.	9.0	43
59	Value of gas network infrastructure flexibility in supporting cost effective operation of power systems. Applied Energy, 2017, 202, 571-580.	10.1	43
60	A Mean Field Game Approach for Distributed Control of Thermostatic Loads Acting in Simultaneous Energy-Frequency Response Markets. IEEE Transactions on Smart Grid, 2019, 10, 5987-5999.	9.0	43
61	Probabilistic Peak Load Estimation in Smart Cities Using Smart Meter Data. IEEE Transactions on Industrial Electronics, 2019, 66, 1608-1618.	7.9	43
62	Reliability and Vulnerability Assessment of Multi-Energy Systems: An Energy Hub Based Method. IEEE Transactions on Power Systems, 2021, 36, 3948-3959.	6.5	43
63	Role and Benefits of Flexible Thermostatically Controlled Loads in Future Low-Carbon Systems. IEEE Transactions on Smart Grid, 2018, 9, 5067-5079.	9.0	42
64	Benefits of Demand-Side Response in Providing Frequency Response Service in the Future GB Power System. Frontiers in Energy Research, 2015, 3, .	2.3	41
65	Computationally Efficient Pricing and Benefit Distribution Mechanisms for Incentivizing Stable Peer-to-Peer Energy Trading. IEEE Internet of Things Journal, 2021, 8, 734-749.	8.7	41
66	Data-Driven Representative Day Selection for Investment Decisions: A Cost-Oriented Approach. IEEE Transactions on Power Systems, 2019, 34, 2925-2936.	6.5	40
67	Optimal Portfolio of Distinct Frequency Response Services in Low-Inertia Systems. IEEE Transactions on Power Systems, 2020, 35, 4459-4469.	6.5	40
68	An affine arithmetic-based multi-objective optimization method for energy storage systems operating in active distribution networks with uncertainties. Applied Energy, 2018, 223, 215-228.	10.1	39
69	Economic assessment of alternative heat decarbonisation strategies through coordinated operation with electricity system – UK case study. Applied Energy, 2018, 222, 79-91.	10.1	38
70	Safe reinforcement learning for real-time automatic control in a smart energy-hub. Applied Energy, 2022, 309, 118403.	10.1	38
71	Data-Driven Power System Operation: Exploring the Balance Between Cost and Risk. IEEE Transactions on Power Systems, 2019, 34, 791-801.	6.5	37
72	Nonlinear and Randomized Pricing for Distributed Management of Flexible Loads. IEEE Transactions on Smart Grid, 2016, 7, 1137-1146.	9.0	36

#	Article	IF	CITATIONS
73	Statistical appraisal of economic design strategies of LV distribution networks. Electric Power Systems Research, 2011, 81, 1363-1372.	3.6	35
74	Realising transition pathways for a more electric, low-carbon energy system in the United Kingdom: Challenges, insights and opportunities. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2017, 231, 440-477.	1.4	35
75	A Three-Level Planning Model for Optimal Sizing of Networked Microgrids Considering a Trade-Off Between Resilience and Cost. IEEE Transactions on Power Systems, 2021, 36, 5657-5669.	6.5	35
76	Role and value of flexibility in facilitating cost-effective energy system decarbonisation. Progress in Energy, 2020, 2, 042001.	10.9	35
77	Full Stochastic Scheduling for Low-Carbon Electricity Systems. IEEE Transactions on Automation Science and Engineering, 2017, 14, 461-470.	5.2	34
78	Cost and low-carbon competitiveness of electrolytic hydrogen in China. Energy and Environmental Science, 2021, 14, 4868-4881.	30.8	34
79	Business cases for energy storage with multiple service provision. Journal of Modern Power Systems and Clean Energy, 2016, 4, 615-625.	5.4	32
80	Cost-Effective Decarbonization in a Decentralized Market: The Benefits of Using Flexible Technologies and Resources. IEEE Power and Energy Magazine, 2019, 17, 25-36.	1.6	32
81	Thermo-economic assessment of flexible nuclear power plants in future low-carbon electricity systems: Role of thermal energy storage. Energy Conversion and Management, 2022, 258, 115484.	9.2	32
82	Using Vine Copulas to Generate Representative System States for Machine Learning. IEEE Transactions on Power Systems, 2019, 34, 225-235.	6.5	31
83	Conditions for Regional Frequency Stability in Power System Scheduling—Part I: Theory. IEEE Transactions on Power Systems, 2021, 36, 5558-5566.	6.5	31
84	A multiâ€objective optimization approach for assessment of technical, commercial and environmental performance of microgrids. European Transactions on Electrical Power, 2011, 21, 1269-1288.	1.0	30
85	Electricity transmission arrangements in Great Britain: Time for change?. Energy Policy, 2014, 73, 298-311.	8.8	30
86	Strategic Valuation of Smart Grid Technology Options in Distribution Networks. IEEE Transactions on Power Systems, 2016, , 1-1.	6.5	30
87	Transmission Network Investment With Distributed Energy Resources and Distributionally Robust Security. IEEE Transactions on Power Systems, 2019, 34, 5157-5168.	6.5	30
88	Incorporating Non-Convex Operating Characteristics Into Bi-Level Optimization Electricity Market Models. IEEE Transactions on Power Systems, 2020, 35, 163-176.	6.5	30
89	Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems. Applied Energy, 2020, 276, 115522.	10.1	30
90	Real-Time Autonomous Residential Demand Response Management Based on Twin Delayed Deep Deterministic Policy Gradient Learning. Energies, 2021, 14, 531.	3.1	30

#	Article	IF	CITATIONS
91	Benefits of smart control of hybrid heat pumps: An analysis of field trial data. Applied Energy, 2019, 247, 525-536.	10.1	29
92	Evaluating grid-interactive electric bus operation and demand response with load management tariff. Applied Energy, 2019, 255, 113798.	10.1	28
93	Stochastic optimization model for coordinated operation of natural gas and electricity networks. Computers and Chemical Engineering, 2020, 142, 107060.	3.8	27
94	Evaluation of the impact of electric heat pumps and distributed CHP on LV networks. , 2011, , .		26
95	Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach. Applied Energy, 2021, 284, 116284.	10.1	26
96	Riskâ€averse bidding of energy and spinning reserve by wind farms with onâ€site energy storage. IET Renewable Power Generation, 2018, 12, 165-173.	3.1	25
97	Scheduling of Wind Farms for Optimal Frequency Response and Energy Recovery. IEEE Transactions on Control Systems Technology, 2016, 24, 1764-1778.	5.2	24
98	Option Value of Demand-Side Response Schemes Under Decision-Dependent Uncertainty. IEEE Transactions on Power Systems, 2018, 33, 5103-5113.	6.5	23
99	Coordinated operation strategies for natural gas and power systems in presence of gasâ€related flexibilities. IET Energy Systems Integration, 2019, 1, 3-13.	1.8	23
100	Fast Frequency Response From Smart Induction Motor Variable Speed Drives. IEEE Transactions on Power Systems, 2020, 35, 997-1008.	6.5	23
101	Integration of Hydrogen into Multi-Energy Systems Optimisation. Energies, 2020, 13, 1606.	3.1	23
102	Provision of Voltage Ancillary Services Through Enhanced TSO-DSO Interaction and Aggregated Distributed Energy Resources. IEEE Transactions on Sustainable Energy, 2021, 12, 897-908.	8.8	23
103	Ancillary services in Great Britain during the COVID-19 lockdown: A glimpse of the carbon-free future. Applied Energy, 2021, 285, 116500.	10.1	23
104	A machine-learning based probabilistic perspective on dynamic security assessment. International Journal of Electrical Power and Energy Systems, 2021, 128, 106571.	5.5	23
105	Stochastic Dual Dynamic Programming for Operation of DER Aggregators Under Multi-Dimensional Uncertainty. IEEE Transactions on Sustainable Energy, 2019, 10, 459-469.	8.8	22
106	A Confidence-Aware Machine Learning Framework for Dynamic Security Assessment. IEEE Transactions on Power Systems, 2021, 36, 3907-3920.	6.5	22
107	Time series modelling of power output for largeâ€scale wind fleets. Wind Energy, 2011, 14, 953-966.	4.2	21
108	Planning With Multiple Transmission and Storage Investment Options Under Uncertainty: A Nested Decomposition Approach. IEEE Transactions on Power Systems, 2018, 33, 3559-3572.	6.5	21

#	Article	IF	CITATIONS
109	Multi-Agent Deep Reinforcement Learning for Coordinated Energy Trading and Flexibility Services Provision in Local Electricity Markets. IEEE Transactions on Smart Grid, 2023, 14, 1541-1554.	9.0	21
110	Reliability Standards for the Operation and Planning of Future Electricity Networks. Foundations and Trends in Electric Energy Systems, 2016, 1, 143-219.	1.0	20
111	Quantifying the Potential Economic Benefits of Flexible Industrial Demand in the European Power System. IEEE Transactions on Industrial Informatics, 2018, 14, 5123-5132.	11.3	20
112	Investing in flexibility in an integrated planning of natural gas and power systems. IET Energy Systems Integration, 2020, 2, 101-111.	1.8	20
113	Coordinated Operation of Gas and Electricity Systems for Flexibility Study. Frontiers in Energy Research, 2020, 8, .	2.3	20
114	Factoring Flexible Demand Non-Convexities in Electricity Markets. IEEE Transactions on Power Systems, 2015, 30, 2090-2099.	6.5	19
115	Demand response contribution to effective inertia for system security in the GB 2020 gone green scenario. , 2013, , .		18
116	Frequency changes in AC systems connected to DC grids: Impact of AC vs. DC side events. , 2014, , .		18
117	Conditions for Regional Frequency Stability in Power System Scheduling—Part II: Application to Unit Commitment. IEEE Transactions on Power Systems, 2021, 36, 5567-5577.	6.5	18
118	Coordinated Electric Vehicle Active and Reactive Power Control for Active Distribution Networks. IEEE Transactions on Industrial Informatics, 2023, 19, 1611-1622.	11.3	17
119	Strategic Assessment of Alternative Design Options for Multivoltage-Level Distribution Networks. IEEE Transactions on Power Systems, 2014, 29, 1261-1269.	6.5	16
120	A fuzzy-logic-based control methodology for secure operation of a microgrid in interconnected and isolated modes. International Transactions on Electrical Energy Systems, 2017, 27, e2389.	1.9	16
121	Assessment of Future Whole-System Value of Large-Scale Pumped Storage Plants in Europe. Energies, 2018, 11, 246.	3.1	16
122	An MPEC approach for analysing the impact of energy storage in imperfect electricity markets. , 2016, , .		15
123	Investigating the impacts of priceâ€taking and priceâ€making energy storage in electricity markets through an equilibrium programming model. IET Generation, Transmission and Distribution, 2019, 13, 305-315.	2.5	15
124	Efficient system integration of wind generation through smart charging of electric vehicles. , 2013, , .		14
125	Corrective Control with Transient Assistive Measures: Value Assessment for Great Britain Transmission System. IEEE Transactions on Power Systems, 2016, , 1-1.	6.5	14
126	Stabilizing peer-to-peer energy trading in prosumer coalition through computational efficient pricing. Electric Power Systems Research, 2020, 189, 106764.	3.6	14

#	Article	IF	CITATIONS
127	Investigating the effects of demand flexibility on electricity retailers' business through a triâ€level optimisation model. IET Generation, Transmission and Distribution, 2020, 14, 1739-1750.	2.5	14
128	A causality based feature selection approach for data-driven dynamic security assessment. Electric Power Systems Research, 2021, 201, 107537.	3.6	14
129	Consumer-centric decarbonization framework using Stackelberg game and Blockchain. Applied Energy, 2022, 309, 118384.	10.1	14
130	Multi-model assessment of heat decarbonisation options in the UK using electricity and hydrogen. Renewable Energy, 2022, 194, 1261-1276.	8.9	14
131	Distributed Control of Micro-Storage Devices With Mean Field Games. IEEE Transactions on Smart Grid, 2015, , 1-1.	9.0	13
132	Incorporating failures of System Protection Schemes into power system operation. Sustainable Energy, Grids and Networks, 2016, 8, 98-110.	3.9	13
133	Economic analysis of energy storage business models. , 2017, , .		13
134	Resilience-Driven Modeling, Operation and Assessment for a Hybrid AC/DC Microgrid. IEEE Access, 2020, 8, 139756-139770.	4.2	13
135	Long-Term Expansion Planning of the Transmission Network in India under Multi-Dimensional Uncertainty. Energies, 2021, 14, 7813.	3.1	13
136	A novel deep-learning based surrogate modeling of stochastic electric vehicle traffic user equilibrium in low-carbon electricity–transportation nexus. Applied Energy, 2022, 315, 118961.	10.1	12
137	Security constrained economic dispatch with flexible thermostatically controlled loads. , 2014, , .		11
138	Evaluation of Synthetic Inertia Provision from Wind Plants. , 2015, , .		11
139	Distributed Consensus-Based Coordination of Flexible Demand and Energy Storage Resources. IEEE Transactions on Power Systems, 2021, 36, 3053-3069.	6.5	11
140	A Backwards Induction Framework for Quantifying the Option Value of Smart Charging of Electric Vehicles and the Risk of Stranded Assets under Uncertainty. Energies, 2022, 15, 3334.	3.1	11
141	Closed loop price signal based market operation within Microgrids. European Transactions on Electrical Power, 2011, 21, 1310-1326.	1.0	10
142	Potential value of energy storage in the UK electricity system. Proceedings of Institution of Civil Engineers: Energy, 2015, 168, 107-117.	0.6	10
143	Value of thermostatic loads in future low-carbon Great Britain system. , 2016, , .		10
144	Assessing the value and impact of demand side response using whole-system approach. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2017, 231, 498-507.	1.4	10

#	Article	IF	CITATIONS
145	Quantification and visualisation of extreme wind effects on transmission network outage probability and wind generation output. IET Smart Grid, 2020, 3, 112-122.	2.2	10
146	Probabilistic Scheduling of UFLS to Secure Credible Contingencies in Low Inertia Systems. IEEE Transactions on Power Systems, 2022, 37, 2693-2703.	6.5	10
147	Optimizing the operation of distributed generation in market environment using genetic algorithms. , 2008, , .		9
148	Decentralized, agent-mediated participation of flexible thermal loads in electricity markets. , 2011, , .		9
149	Decentralized optimization of flexible loads operation in electricity markets. , 2013, , .		9
150	Option value of dynamic line rating and storage. , 2018, , .		9
151	A game-theoretic approach for price-based coordination of flexible devices operating in integrated energy-reserve markets. Energy, 2019, 189, 116153.	8.8	9
152	Investment Model for Cost-effective Integration of Solar PV Capacity under Uncertainty using a Portfolio of Energy Storage and Soft Open Points. , 2019, , .		9
153	Preheating Quantification for Smart Hybrid Heat Pumps Considering Uncertainty. IEEE Transactions on Industrial Informatics, 2019, 15, 4753-4763.	11.3	9
154	Low-Complexity Decentralized Algorithm for Aggregate Load Control of Thermostatic Loads. IEEE Transactions on Industry Applications, 2021, 57, 987-998.	4.9	9
155	Selecting decision trees for power system security assessment. Energy and AI, 2021, 6, 100110.	10.6	9
156	Evaluation of benefits through coordinated control of numerous thermal energy storage in highly electrified heat systems. Energy, 2021, 237, 121600.	8.8	9
157	Value of optimal trip and charging scheduling of commercial electric vehicle fleets with Vehicle-to-Grid in future low inertia systems. Sustainable Energy, Grids and Networks, 2022, 31, 100738.	3.9	9
158	Synergies and conflicts among energy storage services. , 2016, , .		8
159	Provision of ancillary services in future low-carbon UK electricity system. , 2017, , .		8
160	Investigating the Social Efficiency of Merchant Transmission Planning Through a Non-cooperative Game-Theoretic Framework. IEEE Transactions on Power Systems, 2018, 33, 4831-4841.	6.5	8
161	Risk-based method to secure power systems against cyber-physical faults with cascading impacts: a system protection scheme application. Journal of Modern Power Systems and Clean Energy, 2018, 6, 930-943.	5.4	8
162	Investigating the impact of flexible demand on market-based generation investment planning. International Journal of Electrical Power and Energy Systems, 2020, 119, 105881.	5.5	8

#	Article	IF	CITATIONS
163	Machine-learned security assessment for changing system topologies. International Journal of Electrical Power and Energy Systems, 2022, 134, 107380.	5.5	8
164	Coordination for Multienergy Microgrids Using Multiagent Reinforcement Learning. IEEE Transactions on Industrial Informatics, 2023, 19, 5689-5700.	11.3	8
165	An Efficient LP-Based Approach for Spatial-Temporal Coordination of Electric Vehicles in Electricity-Transportation Nexus. IEEE Transactions on Power Systems, 2023, 38, 2914-2925.	6.5	8
166	Timesâ€series modelling for the aggregate Great Britain wind output circa 2030. IET Renewable Power Generation, 2013, 7, 36-44.	3.1	7
167	It's All About Grids: The Importance of Transmission Pricing and Investment Coordination in Integrating Renewables. IEEE Power and Energy Magazine, 2015, 13, 61-75.	1.6	7
168	Value of corrective network security for distributed energy storage applications. IET Generation, Transmission and Distribution, 2016, 10, 1758-1767.	2.5	7
169	An ambiguity averse approach for transmission expansion planning. , 2019, , .		7
170	Role of losses in design of DC cable for solar PV applications. , 2014, , .		6
171	Frequency control using thermal loads under the proposed ENTSO-E Demand Connection Code. , 2015, ,		6
172	Distributed vs. concentrated rapid frequency response provision in future great britain system. , 2016, , .		6
173	Optimal Allocation of ESSs for Mitigating Fluctuation in Active Distribution Network. Energy Procedia, 2017, 142, 3572-3577.	1.8	6
174	A new class of planning models for option valuation of storage technologies under decision-dependent innovation uncertainty. , 2017, , .		6
175	Convergence and optimality of a new iterative price-based scheme for distributed coordination of flexible loads in the electricity market. , 2017, , .		6
176	Integration of Price-Responsive Appliances in the Energy Market Through Flexible Demand Saturation. IEEE Transactions on Control of Network Systems, 2018, 5, 154-166.	3.7	6
177	Distributed Coordination of Flexible Loads Using Locational Marginal Prices. IEEE Transactions on Control of Network Systems, 2019, 6, 1097-1110.	3.7	6
178	Quantification of the Energy Storage Contribution to Security of Supply through the F-Factor Methodology. Energies, 2020, 13, 826.	3.1	6
179	Corrective control through HVDC links: A case study on GB equivalent system. , 2013, , .		5
180	Analysis of Nash equilibria in energy markets with large populations of price-responsive flexible appliances. , 2015, , .		5

#	Article	IF	CITATIONS
181	Coordinated corrective control for transient stability enhancement in future Great Britain transmission system. , 2016, , .		5
182	A stochastic dual dynamic programming approach for optimal operation of DER aggregators. , 2017, , .		5
183	Economic value of inertia in low-carbon power systems. , 2017, , .		5
184	Sample-Derived Disjunctive Rules for Secure Power System Operation. , 2018, , .		5
185	Values of latent heat and thermochemical energy storage technologies in low-carbon energy systems: Whole system approach. Journal of Energy Storage, 2022, 50, 104126.	8.1	5
186	Transition to Digitalized Paradigms for Security Control and Decentralized Electricity Market. Proceedings of the IEEE, 2023, 111, 744-761.	21.3	5
187	Evaluating composite approaches to modelling high-dimensional stochastic variables in power systems. , 2016, , .		4
188	Stochastic optimisation-based valuation of smart grid options under firm DG contracts. , 2016, , .		4
189	Optimal multi-service business models for electric vehicles. , 2017, , .		4
190	Optimization of Heat Sector Decarbonization Strategy through Coordinated Operation with Electricity System. Energy Procedia, 2017, 142, 2858-2863.	1.8	4
191	On Distributed Scheduling of Flexible Demand and Nash Equilibria in the Electricity Market. Dynamic Games and Applications, 2018, 8, 761-798.	1.9	4
192	Distributed Coordination of Price-Responsive Electric Loads: A Receding Horizon Approach. , 2018, , .		4
193	Evaluating Strategies for Decarbonising the Transport Sector in Great Britain. , 2019, , .		4
194	Value of Point-of-Load Voltage Control for Enhanced Frequency Response in Future GB Power System. IEEE Transactions on Smart Grid, 2020, 11, 4938-4948.	9.0	4
195	Integration of powerâ€ŧoâ€gas and lowâ€earbon road transport in Great Britain's future energy system. IET Renewable Power Generation, 2020, 14, 3393-3400.	3.1	4
196	Value of Interconnectors Operating in Simultaneous Energy-Frequency Response Markets. IEEE Transactions on Power Systems, 2022, 37, 3381-3393.	6.5	4
197	Optimal Offering of a Power Producer in Electricity Markets With Profile and Linked Block Orders. IEEE Transactions on Power Systems, 2022, 37, 2704-2719.	6.5	4
198	Co-Optimizing Substation Hardening and Transmission Expansion Against Earthquakes: A Decision-Dependent Probability Approach. IEEE Transactions on Power Systems, 2023, 38, 2058-2070.	6.5	4

2

#	Article	IF	CITATIONS
199	Optimization of operating and investment costs of active management deployment in distribution networks. , 2011, , .		3
200	Participation of electric vehicles in electricity markets through a decentralized mechanism. , 2011, , .		3
201	A Semi-Decentralized Scheme for Integration of Price-Responsive Appliances in the Electricity Market. IFAC-PapersOnLine, 2017, 50, 6729-6736.	0.9	3
202	Coordinated operation of distributed energy storage in low carbon networks. , 2017, , .		3
203	Optimal Scheduling of Frequency Services Considering a Variable Largest-Power-Infeed-Loss. , 2018, , .		3
204	Voltage Support from Distribution Level Resources in South-East England. , 2018, , .		3
205	A Deep Q Network Approach for Optimizing Offering Strategies in Electricity Markets. , 2019, , .		3
206	Consensus-Based Coordination of Time-Shiftable Flexible Demand. , 2019, , .		3
207	Secure Operation of Integrated Natural Gas and Electricity Transmission Networks. Energies, 2020, 13, 4954.	3.1	3
208	Reliability and resiliency assessment in integrated gas and electricity systems in the presence of energy storage systems. , 2021, , 369-397.		3
209	Importance of Linking Inertia and Frequency Response Procurement: The Great Britain Case. , 2021, , .		3
210	Value of Fleet Vehicle to Grid in Providing Transmission System Operator Services. , 2020, , .		3
211	Impact of Local Emergency Demand Response Programs on the Operation of Electricity and Gas Systems. Energies, 2022, 15, 2144.	3.1	3
212	Verifying Machine Learning conclusions for securing Low Inertia systems. Sustainable Energy, Grids and Networks, 2022, 30, 100656.	3.9	3
213	Impact of electric vehicles flexibility on generation expansion planning. , 2013, , .		2
214	Cost-benefit analysis of unreliable System Protection Scheme operation. , 2015, , .		2
215	Addressing demand response concentration under dynamic pricing. , 2015, , .		2

A game theoretic modeling framework for decentralized transmission planning. , 2016, , .

#	Article	IF	CITATIONS
217	Robust estimation of risks from small samples. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160299.	3.4	2
218	Exploring the role of demand shifting in oligopolistic electricity markets. , 2017, , .		2
219	A Distributed Price-based Strategy for Flexible Demand Coordination in Multi-area Systems. , 2018, , .		2
220	Value of Thermostatic Loads in Energyffirequency Response Markets: a Mean Field Game Approach. , 2019, , .		2
221	Contribution of Energy Storage to System Adequacy and its Value in the Capacity Market. , 2019, , .		2
222	Impact of Energy Storage on Market-Based Generation Investment Planning. , 2019, , .		2
223	Distributed Control of Clustered Populations of Thermostatic Loads in Multi-Area Systems: A Mean Field Game Approach. Energies, 2020, 13, 6483.	3.1	2
224	A Novel Preheating Coordination Approach in Electrified Heat Systems. IEEE Transactions on Power Systems, 2022, 37, 3092-3103.	6.5	2
225	Benefits of Active Management of Distribution Systems. , 2012, , 935-950.		1
226	Visualising risk in generating capacity adequacy studies using clustering and prototypes. , 2015, , .		1
227	Decentralized coordination of large populations of flexible electrical appliances through demand saturation. , 2016, , .		1
228	Transmission network expansion planning with stochastic multivariate load and wind modeling. , 2016, , .		1
229	Understanding the aggregate flexibility of thermostatically controlled loads. , 2017, , .		1
230	Investigating the Impact of Demand Flexibility on Electricity Retailers. , 2018, , .		1
231	Low-complexity control algorithm for decentralised demand response using thermostatic loads. , 2019, , .		1
232	Operational Optimization of a Microgrid with Differential Algebraic Constraints. , 2019, , .		1
233	An iterative algorithm for regret minimization in flexible demand scheduling problems. Advanced Control for Applications, 2021, 3, e92.	1.7	1
234	Distributed frequency control by means of responsive wind generation. , 2012, , .		0

#	Article	IF	CITATIONS
235	Techno-economic appraisal of alternative distribution network design options. , 2012, , .		0
236	Pricing flexible demand non-convexities in electricity markets. , 2014, , .		0
237	Integrating customers' differentiated supply valuation in distribution network planning and charging. , 2016, , .		Ο
238	An implicit switching model for distribution network reliability assessment. , 2016, , .		0
239	Inertial response from offshore wind farms connected through DC grids. , 2016, , .		Ο
240	Coordination of Micro-Storage Devices in Power Grids: A Multi-Agent System Approach for Energy Arbitrage. , 2018, , .		0
241	A Game-Theoretic Modeling Approach for Merchant Transmission Planning. , 2018, , .		0
242	Incorporating Demand Flexibility in Strategic Generation Investment Planning. , 2018, , .		0
243	Utilization of an Urban AC Microgrid for Improving Voltages Across a Distribution System. , 2019, , .		0
244	Deep Reinforcement Learning for Strategic Bidding in Electricity Markets. , 2020, , .		0
245	Incorporating Non-Convex Operating Characteristics into Bi-Level Optimization Electricity Market Models. , 2020, , .		Ο
246	Heterogeneous network flow and Petri nets characterize multilayer complex networks. Scientific Reports, 2022, 12, 3513.	3.3	0
247	Local distribution network management through optimal flexibility scheduling: the Austrian pilot of the Horizon 2020 MERLON project. , 2021, , .		Ο