Takao Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11590353/publications.pdf

Version: 2024-02-01

279798 330143 1,646 62 23 37 citations h-index g-index papers 65 65 65 1524 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Reduced Genome of the Thioautotrophic Intracellular Symbiont in a Deep-Sea Clam, Calyptogena okutanii. Current Biology, 2007, 17, 881-886.	3.9	173
2	Crystal Structures of the Group II Chaperonin from Thermococcus strain KS-1: Steric Hindrance by the Substituted Amino Acid, and Inter-subunit Rearrangement between Two Crystal Forms. Journal of Molecular Biology, 2004, 335, 1265-1278.	4.2	82
3	Structural and functional characterization of homo-oligomeric complexes of $\hat{l}\pm$ and \hat{l}^2 chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1 1 1Edited by W. Baumeister. Journal of Molecular Biology, 1997, 273, 635-645.	4.2	77
4	Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population. ISME Journal, 2016, 10, 990-1001.	9.8	77
5	Molecular Evidence that Phylogenetically Diverged Ciliates Are Active in Microbial Mats of Deepâ€Sea Coldâ€Seep Sediment. Journal of Eukaryotic Microbiology, 2010, 57, 76-86.	1.7	69
6	Algivore or Phototroph? Plakobranchus ocellatus (Gastropoda) Continuously Acquires Kleptoplasts and Nutrition from Multiple Algal Species in Nature. PLoS ONE, 2012, 7, e42024.	2.5	68
7	Group II Chaperonin in a Thermophilic Methanogen, Methanococcus thermolithotrophicus. Journal of Biological Chemistry, 1998, 273, 28399-28407.	3.4	61
8	Pyrococcus Prefoldin Stabilizes Protein-Folding Intermediates and Transfers Them to Chaperonins for Correct Folding. Biochemical and Biophysical Research Communications, 2002, 291, 769-774.	2.1	52
9	Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin11Edited by W. Baumeister. Journal of Molecular Biology, 2002, 315, 73-85.	4.2	46
10	ATP Binding Is Critical for the Conformational Change from an Open to Closed State in Archaeal Group II Chaperonin. Journal of Biological Chemistry, 2003, 278, 44959-44965.	3.4	45
11	Localization of Prefoldin Interaction Sites in the Hyperthermophilic Group II Chaperonin and Correlations between Binding Rate and Protein Transfer Rate. Journal of Molecular Biology, 2006, 364, 110-120.	4.2	42
12	Role of the Helical Protrusion in the Conformational Change and Molecular Chaperone Activity of the Archaeal Group II Chaperonin. Journal of Biological Chemistry, 2004, 279, 18834-18839.	3.4	41
13	Natural chaperonin of the hyperthermophilic archaeum, Thermococcus strain KS-1: a hetero-oligomeric chaperonin with variable subunit composition. Molecular Microbiology, 2004, 39, 1406-1413.	2.5	39
14	Surfing the vegetal pole in a small population: extracellular vertical transmission of an 'intracellular' deep-sea clam symbiont. Royal Society Open Science, 2016, 3, 160130.	2.4	35
15	Discovery of asphalt seeps in the deep Southwest Atlantic off Brazil. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 146, 35-44.	1.4	32
16	FK506-binding protein of the hyperthermophilic archaeum, Thermococcus sp. KS-1, a cold-shock-inducible peptidyl-prolyl cis–trans isomerase with activities to trap and refold denatured proteins. Biochemical Journal, 2001, 357, 465-471.	3.7	31
17	Expression of genes for sulfur oxidation in the intracellular chemoautotrophic symbiont of the deep-sea bivalve Calyptogena okutanii. Extremophiles, 2009, 13, 895-903.	2.3	30
18	Phagocytic activities of hemocytes from the deep-sea symbiotic mussels Bathymodiolus japonicus, B.Âplatifrons, and B.Âseptemdierum. Fish and Shellfish Immunology, 2015, 45, 146-156.	3.6	30

#	Article	IF	CITATIONS
19	Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform. Scientific Reports, 2016, 6, 22259.	3.3	30
20	Glycine at the 65th Position Plays an Essential Role in ATP-Dependent Protein Folding by Archael Group II Chaperonin. Biochemical and Biophysical Research Communications, 2001, 289, 1118-1124.	2.1	29
21	Characterization of Archaeal Group II Chaperonin-ADP-Metal Fluoride Complexes. Journal of Biological Chemistry, 2005, 280, 40375-40383.	3.4	29
22	Chloroplast acquisition without the gene transfer in kleptoplastic sea slugs, Plakobranchus ocellatus. ELife, 2021, 10, .	6.0	29
23	Reductive genome evolution in chemoautotrophic intracellular symbionts of deep-sea Calyptogena clams. Extremophiles, 2008, 12, 365-374.	2.3	28
24	Genomic Evidence that Methanotrophic Endosymbionts Likely Provide Deep-Sea Bathymodiolus Mussels with a Sterol Intermediate in Cholesterol Biosynthesis. Genome Biology and Evolution, 2017, 9, 1148-1160.	2.5	28
25	The $28.3\hat{a} \in f$ kDa FK506 binding protein from a thermophilic archaeum, Methanobacterium thermoautotrophicum, protects the denaturation of proteins in vitro. FEBS Journal, 2000, 267, 3139-3149.	0.2	23
26	Two kinds of archaeal group II chaperonin subunits with different thermostability in Thermococcus strain KS-1. Molecular Microbiology, 2002, 44, 761-769.	2.5	23
27	Loss of genes for DNA recombination and repair in the reductive genome evolution of thioautotrophic symbionts of Calyptogena clams. BMC Evolutionary Biology, 2011, 11, 285.	3.2	23
28	Functional Characterization of Recombinant Prefoldin Complexes from a Hyperthermophilic Archaeon, Thermococcus sp. Strain KS-1. Journal of Molecular Biology, 2008, 377, 972-983.	4.2	22
29	FK506-binding protein of the hyperthermophilic archaeum, Thermococcus sp. KS-1, a cold-shock-inducible peptidyl-prolyl cisâ€'trans isomerase with activities to trap and refold denatured proteins. Biochemical Journal, 2001, 357, 465.	3.7	21
30	Ancient Occasional Host Switching of Maternally Transmitted Bacterial Symbionts of Chemosynthetic Vesicomyid Clams. Genome Biology and Evolution, 2017, 9, 2226-2236.	2.5	21
31	Contribution of the C-terminal region to the thermostability of the archaeal group II chaperonin from Thermococcus sp. strain KS-1. Extremophiles, 2006, 10, 451-459.	2.3	20
32	Identification of cells expressing two peptidoglycan recognition proteins in the gill of the vent mussel, Bathymodiolus septemdierum. Fish and Shellfish Immunology, 2019, 93, 815-822.	3.6	20
33	Updated mitochondrial phylogeny of Pteriomorph and Heterodont Bivalvia, including deep-sea chemosymbiotic Bathymodiolus mussels, vesicomyid clams and the thyasirid clam Conchocele cf. bisecta. Marine Genomics, 2017, 31, 43-52.	1.1	19
34	Structural and functional characterization of homo-oligomeric complexes of \hat{l}_{\pm} and \hat{l}_{\pm}^2 chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. Journal of Molecular Biology, 2000, 299, 1399-1400.	4.2	18
35	Expression of genes involved in the uptake of inorganic carbon in the gill of a deep-sea vesicomyid clam harboring intracellular thioautotrophic bacteria. Gene, 2016, 585, 228-240.	2.2	17
36	Small heat shock protein of a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, exists as a spherical 24 mer and its expression is highly induced under heat-stress conditions. Journal of Bioscience and Bioengineering, 2001, 92, 161-166.	2.2	16

#	Article	IF	CITATIONS
37	Long-term Cultivation of the Deep-Sea Clam <i>Calyptogena okutanii</i> Changes in the Abundance of Chemoautotrophic Symbiont, Elemental Sulfur, and Mucus. Biological Bulletin, 2016, 230, 257-267.	1.8	16
38	Turrids whelk, Phymorhynchus buccinoides feeds on Bathymodiolus mussels at a seep site in Sagami Bay, Japan. Plankton and Benthos Research, 2009, 4, 23-30.	0.6	16
39	Characterization of Homo-oligomeric Complexes of $\hat{l}\pm$ and \hat{l}^2 Chaperonin Subunits from the Acidothermophilic Archaeon, Sulfolobussp. Strain 7. Biochemical and Biophysical Research Communications, 1998, 242, 640-647.	2.1	14
40	Cysteine dioxygenase and cysteine sulfinate decarboxylase genes of the deep-sea mussel Bathymodiolus septemdierum: possible involvement in hypotaurine synthesis and adaptation to hydrogen sulfide. Amino Acids, 2015, 47, 571-578.	2.7	14
41	Exclusive localization of carbonic anhydrase in bacteriocytes of the deep-sea clam <i>Calyptogena okutanii</i> with thioautotrophic symbiotic bacteria. Journal of Experimental Biology, 2013, 216, 4403-14.	1.7	13
42	An engineered chaperonin caging a guest protein: Structural insights and potential as a protein expression tool. Protein Science, 2005, 14, 341-350.	7.6	12
43	Effect of long-term exposure to sulfides on taurine transporter gene expression in the gill of the deep-sea mussel Bathymodiolus platifrons, which harbors a methanotrophic symbiont. Fisheries Science, 2010, 76, 381-388.	1.6	12
44	Spatial distribution of sister species of vesicomyid bivalves Calyptogena okutanii and Calyptogena soyoae along an environmental gradient in chemosynthetic biological communities in Japan. Journal of Oceanography, 2013, 69, 129-134.	1.7	12
45	Phagocytosis of exogenous bacteria by gill epithelial cells in the deep-sea symbiotic mussel <i>Bathymodiolus japonicus </i> . Royal Society Open Science, 2022, 9, .	2.4	10
46	Sensing deep extreme environments: the receptor cell types, brain centers, and multi-layer neural packaging of hydrothermal vent endemic worms. Frontiers in Zoology, 2014, 11, 82.	2.0	9
47	Morphological and functional characterization of hemocytes from two deep-sea vesicomyid clams Phreagena okutanii and Abyssogena phaseoliformis. Fish and Shellfish Immunology, 2018, 74, 281-294.	3.6	9
48	Mucus Glycoproteins Selectively Secreted from Bacteriocytes in Gill Filaments of the Deep-Sea Clam & lt;i>Calyptogena okutanii. Open Journal of Marine Science, 2013, 03, 167-174.	0.5	9
49	Nucleotide specificity of an archaeal group II chaperonin fromThermococcusstrain KS-1 with reference to the ATP-dependent protein folding cycle. FEBS Letters, 2002, 514, 269-274.	2.8	8
50	Symbiont Transmission onto the Cell Surface of Early Oocytes in the Deep-Sea Clam Phreagena okutanii. Zoological Science, 2021, 38, 140-147.	0.7	6
51	Loss of genes related to Nucleotide Excision Repair (NER) and implications for reductive genome evolution in symbionts of deep-sea vesicomyid clams. PLoS ONE, 2017, 12, e0171274.	2.5	6
52	Comparative analysis of the protein folding activities of two chaperonin subunits of Thermococcus strain KS-1: the effects of beryllium fluoride. Extremophiles, 2007, 11, 225-235.	2.3	5
53	Monoclonal antibodies to hemocytes of the deep-sea symbiotic mussel, <i>Bathymodiolus japonicus</i> . JAMSTEC Report of Research and Development, 2016, 23, 27-33.	0.2	5
54	Electrical Collection of Membrane-intact and Dehydrogenase-positive Symbiotic Bacteria from the Deep-sea Bivalve <i>Calyptogena Okutanii</i> . Electrochemistry, 2016, 84, 358-360.	1.4	4

#	Article	IF	CITATIONS
55	Effects of a long-term rearing system for deep-sea vesicomyid clams on host survival and endosymbiont retention. Fisheries Science, 2018, 84, 41-51.	1.6	4
56	Inside or out? Clonal thiotrophic symbiont populations occupy deep-sea mussel bacteriocytes with pathways connecting to the external environment. ISME Communications, 2021, 1 , .	4.2	4
57	Refolding of proteins by hexadecamers and monomers of the \hat{l}_{\pm} and \hat{l}^{2} subunits of group II chaperonin from the hyperthermophilic archaeum Thermococcus strain KS-1. Biochemical Engineering Journal, 2004, 18, 73-79.	3.6	3
58	A Novel Alveolate in Bivalves with Chemosynthetic Bacteria Inhabiting Deepâ€Sea Methane Seeps. Journal of Eukaryotic Microbiology, 2013, 60, 158-165.	1.7	3
59	Possible Roles of Hypotaurine and Thiotaurine in the Vesicomyid Clam <i>Phreagena okutanii</i> Biological Bulletin, 2021, 240, 34-40.	1.8	3
60	Crystallization and preliminary X-ray characterization of archaeal group II chaperonin $\hat{l}\pm$ -subunit from Thermococcusstrain KS-1. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1830-1832.	2.5	2
61	Monoclonal antibodies that recognize symbiotic bacteria and hemocytes in the deep-sea vesicomyid clam <i>Phreagena okutanii</i> . JAMSTEC Report of Research and Development, 2018, 26, 75-83.	0.2	0
62	Molecular Detection of a Novel Perkinsid Associated with the <scp>Deepâ€Sea</scp> Clam <i>Phreagena okutanii</i> . Journal of Eukaryotic Microbiology, 2022, , e12917.	1.7	0