
Sang-Bing Ong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1159022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Cell Transcriptome Analysis Decipher New Potential Regulation Mechanism of ACE2 and NPs Signaling Among Heart Failure Patients Infected With SARS-CoV-2. Frontiers in Cardiovascular Medicine, 2021, 8, 628885.	2.4	16

 $_{2}$ Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock 10 $_{9.1}^{1}$ 50 702 Td (edition $_{1,430}^{2}$

3	Circulating miRâ€19bâ€3p as a Novel Prognostic Biomarker for Acute Heart Failure. Journal of the American Heart Association, 2021, 10, e022304.	3.7	16
4	Detection of viral RNA fragments in human iPSC cardiomyocytes following treatment with extracellular vesicles from SARS-CoV-2 coding sequence overexpressing lung epithelial cells. Stem Cell Research and Therapy, 2020, 11, 514.	5.5	47
5	Efficacy of early initiation of ivabradine treatment in patients with acute heart failure: rationale and design of SHIFTâ€AHF trial. ESC Heart Failure, 2020, 7, 4465-4471.	3.1	9
6	Distinct intra-mitochondrial localizations of pro-survival kinases and regulation of their functions by DUSP5 and PHLPP-1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165851.	3.8	4
7	Targeting Mitochondrial Fission Using Mdivi-1 in A Clinically Relevant Large Animal Model of Acute Myocardial Infarction: A Pilot Study. International Journal of Molecular Sciences, 2019, 20, 3972.	4.1	50
8	Calpain Inhibition Restores Autophagy and Prevents Mitochondrial Fragmentation in a Human iPSC Model of Diabetic Endotheliopathy. Stem Cell Reports, 2019, 12, 597-610.	4.8	36
9	Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion injury. Expert Opinion on Therapeutic Targets, 2018, 22, 247-261.	3.4	80
10	Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. , 2018, 186, 73-87.		533
11	The Role of Redox Dysregulation in the Inflammatory Response to Acute Myocardial Ischaemia-reperfusion Injury - Adding Fuel to the Fire. Current Medicinal Chemistry, 2018, 25, 1275-1293.	2.4	50
12	Mitochondrial-Shaping Proteins in Cardiac Health and Disease – the Long and the Short of It!. Cardiovascular Drugs and Therapy, 2017, 31, 87-107.	2.6	75
13	Nanoparticle delivery of mitoprotective agents to target ischemic heart disease. Future Cardiology, 2017, 13, 195-198.	1.2	12
14	Assessing the effects of mitofusin 2 deficiency in the adult heart using 3D electron tomography. Physiological Reports, 2017, 5, e13437.	1.7	11
15	Unique morphological characteristics of mitochondrial subtypes in the heart: the effect of ischemia and ischemic preconditioning. Discoveries, 2017, 5, e71.	2.3	21
16	Mitochondrial Dynamics as a Therapeutic Target for Treating Cardiac Diseases. Handbook of Experimental Pharmacology, 2016, 240, 251-279.	1.8	36
	Experimental Pharmacology, 2010, 240, 201-279.		
17	From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research†Basic Research in Cardiology, 2016, 111, 69.	5.9	41

SANG-BING ONG

#	Article	IF	CITATIONS
19	Akt protects the heart against ischaemia-reperfusion injury by modulating mitochondrial morphology. Thrombosis and Haemostasis, 2015, 113, 513-521.	3.4	76
20	Accumulation of Mitochondrial DNA Mutations Disrupts Cardiac Progenitor Cell Function and Reduces Survival. Journal of Biological Chemistry, 2015, 290, 22061-22075.	3.4	24
21	Parkinson's disease proteins: Novel mitochondrial targets for cardioprotection. , 2015, 156, 34-43.		48
22	The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology, 2015, 78, 23-34.	1.9	263
23	Role of the <scp>MPTP</scp> in conditioning the heart – translatability and mechanism. British Journal of Pharmacology, 2015, 172, 2074-2084.	5.4	61
24	DJ-1 protects against cell death following acute cardiac ischemia–reperfusion injury. Cell Death and Disease, 2014, 5, e1082-e1082.	6.3	63
25	Advances in Medical Diagnostic Technology. Lecture Notes in Bioengineering, 2014, , .	0.4	4
26	Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function. Journal of Molecular and Cellular Cardiology, 2014, 74, 340-352.	1.9	82
27	Imaging of Mitochondrial Disorders: A Review. Lecture Notes in Bioengineering, 2014, , 99-136.	0.4	0
28	Mitochondrial Dynamics in Cardiovascular Health and Disease. Antioxidants and Redox Signaling, 2013, 19, 400-414.	5.4	164
29	Loss of PINK1 Increases the Heart's Vulnerability to Ischemia-Reperfusion Injury. PLoS ONE, 2013, 8, e62400.	2.5	99
30	New roles for mitochondria in cell death in the reperfused myocardium. Cardiovascular Research, 2012, 94, 190-196.	3.8	121
31	37 A novel role for DJ-1 in cardioprotection. Heart, 2011, 97, e8-e8.	2.9	2
32	013â€Modulating mitochondrial dynamics as a novel cardioprotective strategy. Heart, 2010, 96, A10.3-A11.	2.9	0
33	Mitochondrial morphology and cardiovascular disease. Cardiovascular Research, 2010, 88, 16-29.	3.8	254
34	Inhibiting Mitochondrial Fission Protects the Heart Against Ischemia/Reperfusion Injury. Circulation, 2010, 121, 2012-2022.	1.6	845
35	Stimulation of regulatory volume increase (RVI) in avian articular chondrocytes by gadolinium chloride. Biochemistry and Cell Biology, 2010, 88, 505-512.	2.0	6
36	The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Research in Cardiology, 2009, 104, 189-202.	5.9	230