
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1158945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ETV6â€NTRK3 is a common chromosomal rearrangement in radiationâ€associated thyroid cancer. Cancer, 2014, 120, 799-807.	2.0	231
2	A Cohort Study of Thyroid Cancer and Other Thyroid Diseases After the Chornobyl Accident: Thyroid Cancer in Ukraine Detected During First Screening. Journal of the National Cancer Institute, 2006, 98, 897-903.	3.0	206
3	I-131 Dose Response for Incident Thyroid Cancers in Ukraine Related to the Chornobyl Accident. Environmental Health Perspectives, 2011, 119, 933-939.	2.8	178
4	BRAFMutations Are Not a Major Event in Post-Chernobyl Childhood Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4267-4271.	1.8	171
5	Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Letters, 2004, 209, 1-6.	3.2	152
6	Thyroid carcinoma in children and adolescents in ukraine after the Chernobyl nuclear accident. , 1999, 86, 149-156.		149
7	Low Frequency of BRAFT1796A Mutations in Childhood Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4280-4284.	1.8	137
8	Thyroid cancer in the Ukraine. Nature, 1995, 375, 365-365.	13.7	132
9	Heterogeneity in the Distribution ofRET/PTCRearrangements within Individual Post-Chernobyl Papillary Thyroid Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4272-4279.	1.8	127
10	Thyroid carcinoma after Chernobyl latent period, morphology and aggressiveness. British Journal of Cancer, 2004, 90, 2219-2224.	2.9	116
11	Thyroid cancer risk to children calculated. Nature, 1998, 392, 31-32.	13.7	110
12	The Chernobyl Accident and its Consequences. Clinical Oncology, 2011, 23, 234-243.	0.6	107
13	A Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident: Objectives, Design and Methods. Radiation Research, 2004, 161, 481-492.	0.7	104
14	Childhood thyroid cancer since accident at Chernobyl. BMJ: British Medical Journal, 1995, 310, 801-801.	2.4	100
15	<i>RET/PTC</i> and <i>PAX8/PPAR</i> γ chromosomal rearrangements in postâ€Chernobyl thyroid cancer and their association with iodineâ€131 radiation dose and other characteristics. Cancer, 2013, 119, 1792-1799.	2.0	99
16	Thyroid Cancer Risk in Areas of Ukraine and Belarus Affected by the Chernobyl Accident. Radiation Research, 2006, 165, 1-8.	0.7	95
17	Body mass index and the risk of total and cardiovascular mortality among patients with type 2 diabetes: a large prospective study in Ukraine. Heart, 2009, 95, 454-460.	1.2	87
18	Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science, 2021, 372, .	6.0	85

#	Article	IF	CITATIONS
19	Frequency ofBRAF T1796A mutation in papillary thyroid carcinoma relates to age of patient at diagnosis and not to radiation exposure. Journal of Pathology, 2005, 205, 558-564.	2.1	84
20	Activated RET oncogene in thyroid cancers of children from areas contaminated by Chernobyl accident. Lancet, The, 1994, 344, 259.	6.3	79
21	Copy Number and Gene Expression Alterations in Radiation-Induced Papillary Thyroid Carcinoma from Chernobyl Pediatric Patients. Thyroid, 2010, 20, 475-487.	2.4	76
22	Gene expression and the biological phenotype of papillary thyroid carcinomas. Oncogene, 2007, 26, 7894-7903.	2.6	71
23	A Screening Study of Thyroid Cancer and Other Thyroid Diseases among Individuals Exposed in Utero to lodine-131 from Chernobyl Fallout. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 899-906.	1.8	68
24	Morphologic Characteristics of Chernobyl-Related Childhood Papillary Thyroid Carcinomas Are Independent of Radiation Exposure but Vary with Iodine Intake. Thyroid, 2008, 18, 847-852.	2.4	67
25	Effect of calcium dobesilate on occurrence of diabetic macular oedema (CALDIRET study): randomised, double-blind, placebo-controlled, multicentre trial. Lancet, The, 2009, 373, 1364-1371.	6.3	65
26	Clinical Presentation and Clinical Outcomes in Chernobyl-related Paediatric Thyroid Cancers: What Do We Know Now? What Can We Expect in the Future?. Clinical Oncology, 2011, 23, 268-275.	0.6	62
27	Absence of a specific radiation signature in post-Chernobyl thyroid cancers. British Journal of Cancer, 2005, 92, 1545-1552.	2.9	58
28	Thyroid neoplasia risk is increased nearly 30 years after the Chernobyl accident. International Journal of Cancer, 2017, 141, 1585-1588.	2.3	53
29	Seasonality of birth in children and young adults (0–29Âyears) with type 1 diabetes in Ukraine. Diabetologia, 2006, 50, 32-35.	2.9	52
30	Thyroid cancer among Ukrainians and Belarusians who were children or adolescents at the time of the Chernobyl accident. Journal of Radiological Protection, 2006, 26, 51-67.	0.6	52
31	Investigation of the Relationship Between Radiation Dose and Gene Mutations and Fusions in Post-Chernobyl Thyroid Cancer. Journal of the National Cancer Institute, 2018, 110, 371-378.	3.0	52
32	Thyroid Autoantibodies and Thyroid Function in Subjects Exposed to Chernobyl Fallout during Childhood: Evidence for a Transient Radiation-Induced Elevation of Serum Thyroid Antibodies without an Increase in Thyroid Autoimmune Disease. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2729-2736.	1.8	50
33	Glibenclamide-related excess in total and cardiovascular mortality risks: Data from large Ukrainian observational cohort study. Diabetes Research and Clinical Practice, 2009, 86, 247-253.	1.1	50
34	Post-Chornobyl Thyroid Cancers in Ukraine. Report 2: Risk Analysis. Radiation Research, 2006, 166, 375-386.	0.7	49
35	Radiocontamination patterns and possible health consequences of the accident at the Chernobyl nuclear power station. Journal of Radiological Protection, 1990, 10, 3-29.	0.6	47
36	Thyroid Cancer in Children of Ukraine after the Chernobyl Accident. World Journal of Surgery, 2000, 24, 1446-1449.	0.8	47

#	Article	IF	CITATIONS
37	lodine-131 Dose Dependent Gene Expression in Thyroid Cancers and Corresponding Normal Tissues Following the Chernobyl Accident. PLoS ONE, 2012, 7, e39103.	1.1	47
38	Impact of Uncertainties in Exposure Assessment on Estimates of Thyroid Cancer Risk among Ukrainian Children and Adolescents Exposed from the Chernobyl Accident. PLoS ONE, 2014, 9, e85723.	1.1	44
39	A Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident: Dose-Response Analysis of Thyroid Follicular Adenomas Detected during First Screening in Ukraine (1998-2000). American Journal of Epidemiology, 2007, 167, 305-312.	1.6	41
40	Autoimmune Thyroiditis and Exposure to lodine 131 in the Ukrainian Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident: Results from the First Screening Cycle (1998–2000). Journal of Clinical Endocrinology and Metabolism, 2006, 91, 4344-4351.	1.8	40
41	Molecular Mechanisms of the Effects of Low Concentrations of Taxol in Anaplastic Thyroid Cancer Cells. Endocrinology, 2004, 145, 3143-3152.	1.4	39
42	Subclinical Hypothyroidism after Radioiodine Exposure: Ukrainian–American Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident (1998–2000). Environmental Health Perspectives, 2009, 117, 745-750.	2.8	39
43	Seasonality of birth in adult type 2 diabetic patients in three Ukrainian regions. Diabetologia, 2009, 52, 2665-2667.	2.9	36
44	A cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident. Cancer, 2006, 107, 2559-2566.	2.0	35
45	lodine Excretion in Regions of Ukraine Affected by the Chornobyl Accident: Experience of the Ukrainian-American Cohort Study of Thyroid Cancer and Other Thyroid Diseases. Thyroid, 2005, 15, 1291-1297.	2.4	34
46	RET rearrangements in post-Chernobyl papillary thyroid carcinomas with a short latency analysed by interphase FISH. British Journal of Cancer, 2006, 94, 1472-1477.	2.9	34
47	lodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers. British Journal of Cancer, 2013, 109, 2286-2294.	2.9	30
48	Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. British Journal of Cancer, 2015, 113, 1556-1564.	2.9	29
49	Histopathological analysis of papillary thyroid carcinoma detected during ultrasound screening examinations in Fukushima. Cancer Science, 2019, 110, 817-827.	1.7	26
50	Chromosomal Imbalances in Post-Chernobyl Thyroid Tumors. Thyroid, 2004, 14, 1061-1064.	2.4	25
51	Dose-dependent expression of CLIP2 in post-Chernobyl papillary thyroid carcinomas. Carcinogenesis, 2015, 36, 748-756.	1.3	25
52	TP53 codon 72 polymorphism in radiation-associated human papillary thyroid cancer. Oncology Reports, 2006, 15, 949-56.	1.2	25
53	Long-term strategies for thyroid health monitoring after nuclear accidents: recommendations from an Expert Group convened by IARC. Lancet Oncology, The, 2018, 19, 1280-1283.	5.1	23
54	Thyroid Cancer and Benign Nodules After Exposure <i>In Utero</i> to Fallout From Chernobyl. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 41-48.	1.8	23

#	Article	IF	CITATIONS
55	Thyroid cancer in Ukraine after the Chernobyl accident (in the framework of the Ukraine–US Thyroid) Tj ETQq1	1 0.78431	4.rgBT /O₩
56	Radiation induced thyroid cancer: fundamental and applied aspects. Experimental Oncology, 2010, 32, 200-4.	0.4	22
57	Age Distribution of Childhood Thyroid Cancer Patients in Ukraine After Chernobyl and in Fukushima After the TEPCO-Fukushima Daiichi NPP Accident. Thyroid, 2014, 24, 1547-1548.	2.4	21
58	Chernobyl Tumor Bank. Thyroid, 2000, 10, 1126-1127.	2.4	20
59	Investigation of Loss of Heterozygosity and SNP Frequencies in the RET Gene in Papillary Thyroid Carcinoma. Thyroid, 2005, 15, 100-104.	2.4	20
60	Reconstruction of individual thyroid doses to the Ukrainian subjects enrolled in the Chernobyl Tissue Bank. Radiation Protection Dosimetry, 2013, 156, 407-423.	0.4	20
61	Neonatal outcomes following exposure in utero to fallout from Chernobyl. European Journal of Epidemiology, 2017, 32, 1075-1088.	2.5	20
62	Thyroid Tumor Banks. Science, 2000, 289, 2283a-2283.	6.0	18
63	Estimating Thyroid Masses for Children, Infants, and Fetuses in Ukraine Exposed to 1311 From the Chernobyl Accident. Health Physics, 2013, 104, 78-86.	0.3	16
64	Comparative Histopathologic Analysis of "Radiogenic―and "Sporadic―Papillary Thyroid Carcinoma: Patients Born Before and After the Chernobyl Accident. Thyroid, 2018, 28, 880-890.	2.4	16
65	Time trends of thyroid cancer incidence in Ukraine after the Chernobyl accident. Journal of Radiological Protection, 2004, 24, 283-293.	0.6	14
66	TP53 codon 72 polymorphism in radiation-associated human papillary thyroid cancer. Oncology Reports, 2006, 15, 949.	1.2	14
67	Prevalence of Hyperthyroidism after Exposure during Childhood or Adolescence to Radioiodines from the Chornobyl Nuclear Accident: Dose–Response Results from the Ukrainian-American Cohort Study. Radiation Research, 2010, 174, 763-772.	0.7	14
68	Papillary Thyroid Carcinoma in Ukraine After Chernobyl and in Japan After Fukushima: Different Histopathological Scenarios. Thyroid, 2021, 31, 1322-1334.	2.4	14
69	Primary care diabetes in Ukraine. Primary Care Diabetes, 2007, 1, 203-205.	0.9	13
70	Non-thyroid cancer in Northern Ukraine in the post-Chernobyl period: Short report. Cancer Epidemiology, 2015, 39, 279-283.	0.8	13
71	Post-surgical ablation of thyroid residues with radioiodine in Ukrainian children and adolescents affected by post-Chernobyl differentiated thyroid cancer. Journal of Endocrinological Investigation, 2001, 24, 445-447.	1.8	11
72	Creation of a tumour bank for post Chernobyl thyroid cancer. Clinical Endocrinology, 2001, 55, 423-423.	1.2	11

#	Article	IF	CITATIONS
73	What Have We Learnt From Chernobyl? What Have We Still To Learn?. Clinical Oncology, 2011, 23, 229-233.	0.6	11
74	Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian–American Cohort. Carcinogenesis, 2015, 36, 1381-1387.	1.3	11
75	The BRAFV600E Mutation Is Not a Risk Factor for More Aggressive Tumor Behavior in Radiogenic and Sporadic Papillary Thyroid Carcinoma at a Young Age. Cancers, 2021, 13, 6038.	1.7	11
76	Prevalence of diabetes mellitus and its complications in the Ukraine. Diabetes Research and Clinical Practice, 1996, 34, S73-S78.	1.1	10
77	The joint effects of different types of glucose-lowering treatment and duration of diabetes on total and cardiovascular mortality among subjects with type 2 diabetes. Diabetes Research and Clinical Practice, 2008, 82, 139-147.	1.1	10
78	Gender Risk of Nonfatal Stroke in Type 2 Diabetic Patients Differs Depending on the Type of Treatment. Journal of Women's Health, 2009, 18, 97-103.	1.5	10
79	Comparative histopathological analysis of sporadic pediatric papillary thyroid carcinoma from Japan and Ukraine. Endocrine Journal, 2017, 64, 977-993.	0.7	10
80	Relationship between hyperglycemia, waist circumference, and the course of COVID-19: Mortality risk assessment. Experimental Biology and Medicine, 2022, 247, 200-206.	1.1	10
81	Plasma Apolipoproteins A1/B and OxLDL Levels in Patients with Covid-19 As Possible Markers of the Disease. Cytology and Genetics, 2021, 55, 519-523.	0.2	10
82	In Utero Exposure to Iodine-131 from Chernobyl Fallout and Anthropometric Characteristics in Adolescence. Radiation Research, 2014, 181, 293.	0.7	9
83	Single nucleotide polymorphism analysis in the human phosphatase PTPrj gene using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 2249-2254.	0.7	8
84	NA cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident. Cancer Cytopathology, 2009, 117, 73-81.	1.4	8
85	Factors associated with serum thyroglobulin in a Ukrainian cohort exposed to iodine-131 from the accident at the Chernobyl Nuclear Plant. Environmental Research, 2017, 156, 801-809.	3.7	8
86	Activation of the PI3K/Akt/mTOR/p70S6K1 Signaling Cascade in the Mononuclear Cells of Peripheral Blood: Association with Insulin and Insulin-Like Growth Factor Levels in the Blood of Patients with Cancer and Diabetes. Cytology and Genetics, 2019, 53, 489-493.	0.2	7
87	Inhibitor of the transcription factor NF-κB, DHMEQ, enhances the effect of paclitaxel on cells of anaplastic thyroid carcinoma in vitro and in vivo. Ukrainian Biochemical Journal, 2015, 87, 63-74.	0.1	7
88	Effects of Paclitaxel and combination of the drug with radiation therapy in an in vivo model of anaplastic thyroid carcinoma. Experimental Oncology, 2011, 33, 24-7.	0.4	7
89	Thyroid gland and radiation (Ukrainian-American Thyroid Project). International Congress Series, 2003, 1258, 91-104.	0.2	6
90	Factors associated with elevated serum concentrations of antiâ€TPO antibodies in subjects with and without diffuse goitre. Results from the Ukrainian–American Cohort Study of Thyroid Cancer and Other Thyroid Diseases Following the Chornobyl Accident. Clinical Endocrinology, 2007, 67, 879-890.	1.2	6

#	Article	IF	CITATIONS
91	Differences in Sonographic Conspicuity According to Papillary Thyroid Cancer Subtype: Results of the Ukrainian–American Cohort Study After the Chornobyl Accident. American Journal of Roentgenology, 2008, 191, W293-W298.	1.0	6
92	Morphological difference in adult thyroid papillary carcinoma between Japan and Ukraine. Endocrine Journal, 2014, 61, 1221-1228.	0.7	6
93	Thirty years after the Chernobyl accident: Molecular genetic mechanisms of carcinogenesis of the thyroid gland. Cytology and Genetics, 2016, 50, 366-371.	0.2	6
94	Đ'Đ»Đ,ÑĐ½Đ,е Đ»ĐµÑ‡ĐµĐ½Đ,Ñ•Đ¼ĐµÑ,Ñ"Đ¾Ñ€Đ¼Đ,Đ½Đ¾Đ¼ Đ½Đ° ÑƒÑ€Đ¾Đ²ĐµĐ½ÑŒ GLP-1, N	T-por.ouBNP f	⅁ _ֈ ଈ୕Đ½ĐƊ¾
95	Apolipoprotein A1 level in plasma of patients with diabetes and diabetic patients with COVID-19 as a possible marker of disease. Reports National Academy of Science of Ukraine, 2021, , 110-113.	0.0	6

96	Histopathological characteristics and post-operative follow-up of patients with potentially radiogenic papillary thyroid carcinoma depending on oncocytic changes availability in the tumor cells. Experimental Oncology, 2023, 41, 235-241.	0.4	6
97	Đ¢Đ¾Đ°ÑĐ,Ñ‡Đ½Ñ–ÑÑŒ ĐœĐĐĐš у ĐºĐ°Ñ€Ñ†Đ,Đ½Đ¾Đ¼Đ°Ñ Ñ‰Đ,Ñ,Đ¾ĐįĐ¾Đ´Ñ–Đ±Đ½Đ¾Ñ–	- Đ�DôĐ»{)¾Ð∙Ð,. Đœ
98	Effect of lons of Potassium and Lithium on NO Synthase Expression in the Human Adrenal Cortex. Bulletin of Experimental Biology and Medicine, 2014, 156, 332-334.	0.3	5
99	Epidemiology of autoimmune thyroiditis. Mìžnarodnij EndokrinologìÄnij Žurnal, 2021, 17, 136-144.	0.1	5

100 ЛеĐ¹ĐºĐ¾Ñ†Đ,Ñ,аÑ€Đ½Ñ‹Đ¹ ÑĐ¾ÑÑ,аĐ² Đ, Đ,Đ½Đ ĐµĐ⁰Ñ•ÑĐ¾Đ¾Ñ,Đ½Đ¾Ñ^еĐ½D,Ñ•Đ½ĐµĐ¹Ñ,Ñ€Đ∯ÃN,Đ,Đ»Đ¾Đ² Đ,

101	Reply to: Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Letters, 2005, 230, 149-150.	3.2	4
102	Correlation between the prevalence of type 1 diabetes with the daily insulin dose and the autoimmune process against glutamic acid decarboxylase in adults. European Journal of Internal Medicine, 2009, 20, 611-615.	1.0	4
103	Frequency of Undetected Thyroid Nodules in a Large I-131-Exposed Population Repeatedly Screened by Ultrasonography: Results from the Ukrainian–American Cohort Study of Thyroid Cancer and Other Thyroid Diseases Following the Chornobyl Accident. Thyroid, 2010, 20, 959-964.	2.4	4
104	Pathology of Radiation-Induced Thyroid Cancer: Lessons from Chernobyl Thyroid Cancer Study. , 2019, , 549-563.		4
105	Utility of gene expression studies in relation to radiation exposure and clinical outcomes: thyroid cancer in the Ukrainian-American cohort and late health effects in a MAYAK worker cohort. International Journal of Radiation Biology, 2021, 97, 12-18.	1.0	4
106	Effects of COVID-19, diabetes mellitus, and cardiovascular diseases on insulin receptor substrate-1 amount in the blood plasma of patients. Reports National Academy of Science of Ukraine, 2021, , 114-117.	0.0	4
107	ĐÑ–Đ²ĐµĐ½ÑŒ аĐ;Đ¾Đ»Ñ–Đ;Đ¾Đ;Ñ€Đ¾Ñ,ĐµÑ–Đ½Ñƒ Đᠯ у ÑĐ²Đ¾Ñ€Đ,Ñ Đ½Đ° Ñ†ÑƒĐºÑ€Đ¾	в∰,₱¹ Ð1	Ñ⊸абе

Cytokines in the blood of patients with type 2 diabetes mellitus depending on the level of overweight/obesity (literature review and own data). Mìžnarodnij EndokrinologìÄnij Žurnal, 2021, 17, 0.1 4 534-551.

#	Article	IF	CITATIONS
109	Role of seasonal factors in pre-and postnatal ontogenesis in etiology of type 1 diabetes mellitus. Russian Journal of Developmental Biology, 2006, 37, 230-236.	0.1	3
110	Long-Term Analysis of the Incidence and Histopathology of Thyroid Cancer in Ukraine in Adult Patients Who Were Children and Adolescents at the Time of the Chernobyl Accident. , 2017, , 67-76.		3
111	Thyroid Cancer in Ukraine After the Chernobyl Accident: Incidence, Pathology, Treatment, and Molecular Biology. , 2009, , 305-316.		3
112	Protein kinase Akt activity in human thyroid tumors. Ukrainian Biochemical Journal, 2016, 88, 90-95.	0.1	3
113	The Effect of the Combined Action of Roscovitine and Paclitaxel on the Apoptotic and Cell Cycle Regulatory Mechanisms in Colon and Anaplastic Thyroid Cancer Cells. , 2012, 2012, 1-6.		3
114	2337-PUB: Impact of Treatment with Insulin and Other Hypoglycemic Drugs on 5'-AMP-Activated Protein Kinase Activity in Leukocytes of Patients with Type 2 Diabetes. Diabetes, 2019, 68, .	0.3	3
115	Prolactin reception and its effect on ACTH binding in human and guinea pig adrenocortical cells. Bulletin of Experimental Biology and Medicine, 1989, 108, 1114-1116.	0.3	2
116	Thyroid gland and radiation (fundamental and applied aspects): 20Âyears after the Chernobyl accident. International Congress Series, 2007, 1299, 46-53.	0.2	2
117	Biochemical effects of estrogens in non-reproductive organs. Ukrainian Biochemical Journal, 2015, 87, 10-23.	0.1	2
118	Biological effects of lithium – fundamental and medical aspects. Ukrainian Biochemical Journal, 2017, 89, 5-16.	0.1	2
119	Biochemical effects of combined action of ?-irradiation and paclitaxel on anaplastic thyroid cancer cells. Ukrainian Biochemical Journal, 2013, 85, 51-61.	0.1	2
120	Current advances in clinical pathophysiology in the study of the pathogenesis of type 1 and type 2 diabetes mellitus in humans. Mìžnarodnij EndokrinologìÄnij Žurnal, 2019, 15, 422-434.	0.1	2
121	Assessment of internal exposure to 1311 and short-lived radioiodine isotopes and associated uncertainties in the Ukrainian cohort of persons exposed in utero. Journal of Radiation Research, 2022, , .	0.8	2
122	Apolipoprotein B and oxLDL levels in plasma of patients with diabetes, cardiovascular disease, and COVID-19. Reports National Academy of Science of Ukraine, 2021, , 126-130.	0.0	2
123	ЗаÑÑ,Đ¾ÑÑƒĐ²Đ°Đ½Đ½N•ÑÑ,Đ¾Đ²Đ±ÑƒÑ€Đ¾Đ²Đ,Ñ ĐºĐ»Ñ−Ñ,Đ,Đ½ Đ² ĐµĐ½Đ´Đ¾ĐºÑ€Đ,Đ½Đ3	/4Ðø Ð \$/4Ð	³Ñ- a Ñ—: пр
124	Effects of COVID-19 and diabetes mellitus on AMPKα1 and IRS-1 amount in the blood plasma of patients. Reports National Academy of Science of Ukraine, 2022, , 87-91.	0.0	2
125	Radiocontamination patterns and possible health consequences of the accident at the Chernobyl nuclear power station. Journal of Radiological Protection, 1990, 10, 174-174.	0.6	1
126	Isoforms of protein kinase C and their distribution in human adrenal cortex and tumors. Bulletin of Experimental Biology and Medicine, 2001, 132, 841-843.	0.3	1

#	Article	IF	CITATIONS
127	Risk analysis of thyroid cancer incidence after exposure in childhood in the most contaminated areas of Ukraine, Belarus, and Russia in comparison with other studies. International Journal of Low Radiation, 2006, 2, 188.	0.1	1
128	Thyroid Cancer Risk in Ukraine Following the Chernobyl Accident (The Ukrainian–American Cohort) Tj ETQq0 C	0 rgBT /O	verlock 10 T
129	ІмунофеноÑ,ип лімфоциÑ,ів ĐºÑ€Ð¾Ð²Ñ– у Ñ…Đ²Đ¾Ñ€Ð¸Ñ… Ð½Đ°	ц ð, ftкр	оĐ2Ð,Ð1
130	The impact of obesity on the development of certain cancers in patients with type 2 diabetes. Medicni Perspektivi, 2021, 26, 88-96.	0.1	1
131	Abstract 2544: Associations between RET/PTC rearrangements, BRAF and RAS mutations and radiation dose, age at exposure, and latency in post-Chernobyl thyroid cancer. , 2012, , .		1
132	Effects of COVID-19 and diabetes mellitus on apolipoprotein A1 level in the blood plasma of patients. Mìžnarodnij EndokrinologìÄnij Žurnal, 2021, 17, 411-417.	0.1	1
133	Effects of vitamin D in thyroid autoimmune pathologies: literature review and own data. Mìžnarodnij EndokrinologìÄnij Žurnal, 2021, 17, 400-410.	0.1	1
134	PCNA expression as a marker of proliferation in benign and highly differentiated malignant tumors of the human thyroid gland (literature review and clinical case). MA¬Å¾narodnij EndokrinologA¬Änij Žurnal, 2019, 15, 339-343.	0.1	1
135	The effectiveness of methylcobalamin in the complex treatment of diabetic peripheral neuropathy. Mìžnarodnij EndokrinologìÄnij Žurnal, 2019, 15, 371-375.	0.1	1
136	Diabetes mellitus and COVID-19: current issues of pathogenesis, clinic and therapy. Literature review. Reproductive Endocrinology, 2020, .	0.0	1
137	ϴϿ•ϴ™ϴϿžϴΫϴϴžϴ¢ϴ•ϴšϴ¢ϴžϴϴϴϯͺϴ'ϴ͵ϴϴϳϴ¢ϴʹϴʹϴϳϴϛϴϳϴ¢ϴϯͺϳ±-ϴ͵ϴϯϴΫϴžϴ"ϴʹϴžϴ‡ͺϴšϴʹϴϳϴ͵ϴžϴ¢ϴʹͺϴ£ͺϨ	¥ÐðОÐÐ^	Ð¥ÐЕДІ
138	Morphological features of thyroid benign focal neoplasms in Graves' disease. Mìžnarodnij EndokrinologìÄnij Žurnal, 2022, 18, 213-218.	0.1	1
139	Changes in dependence of lymphocyte reactivity to phytomitogens on endogenous hormonal factors in experimental bacterial prostatitis. Bulletin of Experimental Biology and Medicine, 1979, 87, 637-639.	0.3	Ο
140	Inhibition of corticosteroid production by pineal factor. Bulletin of Experimental Biology and Medicine, 1979, 88, 834-836.	0.3	0
141	Biochemical mechanisms of pantethine hypolipidemic action in insulin-dependent diabetes. Pharmaceutical Chemistry Journal, 1988, 22, 812-818.	0.3	Ο
142	Changes in lipid peroxidation induced by chloditane in adrenals of dogs and guinea pigs. Bulletin of Experimental Biology and Medicine, 1989, 107, 180-182.	0.3	0
143	Pathology of thyroid cancer in children and adolescents of Ukraine having been exposed as a result of the Chernobyl accident. International Congress Series, 2007, 1299, 256-262.	0.2	0
144	Reply to letter: Thyroid neoplasia after Chernobyl: A comment. International Journal of Cancer, 2019, 144, 2898-2898.	2.3	0

#	Article	IF	CITATIONS
145	Diabetes mellitus in combination with COVID-19: modern views on therapy. Reproductive Endocrinology, 2021, , 8-20.	0.0	0
146	Abstract 3599: Prevalance and spectrum of chromosomal rearrangements in post-Chernobyl thyroid cancer , 2013, , .		0
147	Thyroid nodules in the population of Ukraine, protocol of diagnosis and treatment after the Chernobyl accident (literature review and own data). Mìžnarodnij EndokrinologìÄnij Žurnal, 2018, 14, 677-683.	0.1	0
148	1194-P: NT-proBNP, Subclinical Diastolic Dysfunction in Patients with DM Type 1 Treated with iSGLT2. Diabetes, 2019, 68, 1194-P.	0.3	0
149	487-P: The Activation of mTORC1 in Leukocytes of Patients with Cancer and Diabetes. Diabetes, 2019, 68, 487-P.	0.3	0
150	Clinical and biochemical markers of joint damage in patients with diabetes mellitus. Zaporožskij Medicinskij Žurnal, 2020, .	0.0	0
151	Clinical features and risk factors of diabetes-associated osteoarthritis. Mìžnarodnij EndokrinologìÄnij żzurnal, 2020, 16, 130-137.	0.1	0
152	ĐŸĐ¾ĐĐĐ½Đ¸Đ¹ Đ³Đ¸ĐįĐ¾Đ³Đ¾Đ½Đ°ĐиĐĐ¼ у Đ¼ÑƒĐ¶Ñ‡Đ¸Đ½, Đ±Đ¾Đ»ÑŒĐ½Ñ‹Ñ ÑаÑаÑ	I€ Ð ½Ñ‹Ð'	¼ Ð Đ,аб€

153 $D\tilde{S}D\tilde{N} - D^{1/2}\tilde{N} - \tilde{N}^{\dagger}D^{1/2}\tilde{N} - D_{\tilde{Z}}\tilde{N} \in D^{3/4}\tilde{N}D^{2}D_{\tilde{Z}}\tilde{N} \in D^{3/4}D^{1/2$

154 ЦÑfкроĐ2Ð,й ÐіабĐμÑ, Ñ– COVID-19: ŇŇf҇аŇĐ½Ñ– ĐįĐ¾Đ3Đ»ŇĐĐ, Đ½Đ° ĐįаŇ,Đ¾Đ3ĐμĐ½∂ĐμŇ,ĐĮ҇Đ½Ñ– ł

155 ЦÐ,Ñ,ологÑ−чнÑ− чÐ,Đ½Đ½D½D½D½D,Đ⁰Đ, ĐįÑ€Đ¾Đ3Đ½D¾Đ.у ĐįÑ−ÑĐ»ÑĐ¾Đ;еÑ€Đ°Ñ†Ň−Đ¹Đ½∞Đ¾Đ3Đ¾ Đ¹4Đ

Epigenetics, cell cycle and stem cell metabolism. Formation of insulin-producing cells. Mìžnarodnij
EndokrinologìÄnij żurnal, 2022, 18, 169-179.