Minori Abe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1158874/publications.pdf

Version: 2024-02-01

68	1,594	24 h-index	38
papers	citations		g-index
70	70	70	1241 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Study of HgOH to Assess Its Suitability for Electron Electric Dipole Moment Searches. Atoms, 2021, 9, 7.	1.6	6
2	Density Functional Study on Compounds to Accelerate the Electron Capture Decay of ⁷ Be. Journal of Physical Chemistry A, 2021, 125, 6356-6361.	2.5	3
3	Ab initio and steady-state models for uranium isotope fractionation in multi-step biotic and abiotic reduction. Geochimica Et Cosmochimica Acta, 2021, 307, 212-227.	3.9	5
4	Density Functional Study of Metal-to-Ligand Charge Transfer and Hole-Hopping in Ruthenium(II) Complexes with Alkyl-Substituted Bipyridine Ligands. ACS Omega, 2021, 6, 55-64.	3.5	7
5	Relativistic coupled-cluster study of diatomic metal-alkali-metal molecules for electron electric dipole moment searches. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 015102.	1.5	3
6	Significance of Non-Linear Terms in the Relativistic Coupled-Cluster Theory in the Determination of Molecular Properties. Symmetry, 2020, 12, 811.	2.2	4
7	Attainable accuracies of QH+ rotational transition frequencies (Q: 40Ca, 24Mg, 202Hg). Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 085401.	1.5	1
8	Accurate determination of the enhancement factor $\langle i \rangle X \langle j \rangle$ for the nuclear Schiff moment in $\langle \sup \rangle 205 \langle j \sup \rangle$ TIF molecule based on the four-component relativistic coupled-cluster theory. Molecular Physics, 2020, 118, e1767814.	1.7	4
9	Inverted Sandwich Rh Complex Bearing a Plumbole Ligand and Its Catalytic Activity. Organometallics, 2019, 38, 3099-3103.	2.3	15
10	¹³ C and ²⁰⁷ Pb NMR Chemical Shifts of Dirhodio- and Dilithioplumbole Complexes: A Quantum Chemical Assessment. Inorganic Chemistry, 2019, 58, 14708-14719.	4.0	4
11	Enhanced sensitivity of the electron electric dipole moment from YbOH: The role of theory. Physical Review A, 2019, 99, .	2.5	30
12	Factors influencing the photoelectrochemical device performance sensitized by ruthenium polypyridyl dyes. Dalton Transactions, 2019, 48, 688-695.	3.3	18
13	The Role of Relativistic Many-Body Theory in Electron Electric Dipole Moment Searches Using Cold Molecules. Atoms, 2019, 7, 58.	1.6	O
14	Merits of heavy-heavy diatomic molecules for electron electric-dipole-moment searches. Physical Review A, 2019, 99, .	2.5	14
15	RaH as a potential candidate for electron electric-dipole-moment searches. Physical Review A, 2019, 99,	2.5	16
16	Ultracold mercury–alkali-metal molecules for electron-electric-dipole-moment searches. Physical Review A, 2019, 99, .	2.5	11
17	Calculations of electronic properties and vibrational parameters of alkaline-earth lithides: MgLi+ and CaLi+. Molecular Physics, 2019, 117, 712-725.	1.7	7
18	Spectroscopic Studies of $\$\{^1\}$ mathrm {varSigma }^+\$\$ 1 Σ + States of HfH $\$^+$ \$ + and PtH $\$^+$ \$ + Molecular lons. Springer Proceedings in Physics, 2019, , 191-198.	0.2	0

#	Article	IF	CITATIONS
19	Accurate ab initio calculations of spectroscopic constants and properties of BeLi+. Journal of Molecular Spectroscopy, 2018, 349, 1-9.	1.2	7
20	Application of the finite-field coupled-cluster method to calculate molecular properties relevant to electron electric-dipole-moment searches. Physical Review A, 2018, 97, .	2.5	28
21	Electron correlation trends in the permanent electric dipole moments of alkaline-earth-metal monohydrides. Physical Review A, 2018, 98, .	2.5	7
22	Enhancement factors of parity- and time-reversal-violating effects for monofluorides. Physical Review A, 2018, 98, .	2.5	16
23	Theoretical analysis of effective electric fields in mercury monohalides. Physical Review A, 2017, 95, .	2.5	4
24	Analysis of large effective electric fields of weakly polar molecules for electron electric-dipole-moment searches. Physical Review A, 2017, 95, .	2.5	12
25	Relativistic Many-Body Aspects of the Electron Electric Dipole Moment Searches Using Molecules. , 2017, , 581-609.		1
26	Theoretical Study of Formulation of Hyperfine Coupling Constant in Four-component Relativistic Framework. Journal of Computer Chemistry Japan, 2017, 16, 81-82.	0.1	0
27	Heavy Element Effects in the Diagonal Born–Oppenheimer Correction within a Relativistic Spin-Free Hamiltonian. Journal of Physical Chemistry A, 2016, 120, 2150-2159.	2.5	6
28	Relativistic coupled-cluster calculation of the electron-nucleus scalar-pseudoscalar interaction constant <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>W</mml:mi><mml:mi>s</mml:mi><td>> < /mml:m:</td><td>sub3</td></mml:msub></mml:math>	> < /mml:m:	sub3
29	Permanent electric dipole moments of alkaline-earth-metal monofluorides: Interplay of relativistic and correlation effects. Physical Review A, $2016, 93, .$	2.5	13
30	Contribution of relativistic quantum chemistry to electron $\widehat{a}\in \mathbb{T}^M$ s electric dipole moment for CP violation. AIP Conference Proceedings, 2015, , .	0.4	0
31	Anab initiostudy of nuclear volume effects for isotope fractionations using two-component relativistic methods. Journal of Computational Chemistry, 2015, 36, 816-820.	3.3	8
32	Mercury Monohalides: Suitability for Electron Electric Dipole Moment Searches. Physical Review Letters, 2015, 114, 183001.	7.8	41
33	Relativistic Many-Body Aspects of the Electron Electric Dipole Moment Searches Using Molecules. , 2015, , 1-26.		0
34	Dipole polarizability of alkali-metal (Na, K, Rb)–alkaline-earth-metal (Ca, Sr) polar molecules: Prospects for alignment. Journal of Chemical Physics, 2014, 140, 224303.	3.0	32
35	xmins:mmi="nttp://www.w3.org/1998/Niath/Ni	> > 2.5	sub>sub>54
36	Permanent electric dipole moment of strontium monofluoride as a test of the accuracy of a relativistic coupled-cluster method. Physical Review A, 2014, 90, .	2.5	12

#	Article	IF	CITATIONS
37	Quantumâ€chemical analyses of aromaticity, UV spectra, and NMR chemical shifts in plumbacyclopentadienylidenes stabilized by Lewis bases. Journal of Computational Chemistry, 2014, 35, 847-853.	3.3	8
38	Application of relativistic coupled-cluster theory to the effective electric field in YbF. Physical Review A, $2014, 90, .$	2.5	52
39	Characterizing of variation in the proton-to-electron mass ratio via precise measurements of molecular vibrational transition frequencies. Journal of Molecular Spectroscopy, 2014, 300, 99-107.	1.2	17
40	Theoretical Study of Isotope Enrichment Caused by Nuclear Volume Effect. Journal of Computer Chemistry Japan, 2014, 13, 92-104.	0.1	5
41	Diagonal Born-Oppenheimer Correction Based on Spin-Free Relativistic Hamiltonians. Journal of Computer Chemistry Japan, 2014, 13, 229-232.	0.1	1
42	Nuclear field shift effect in isotope fractionation of thallium. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296, 261-265.	1.5	16
43	Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology. Geochimica Et Cosmochimica Acta, 2013, 110, 29-44.	3.9	140
44	<i>Ab initio</i> study of ground and excited states of 6Li40Ca and 6Li88Sr molecules. Journal of Chemical Physics, 2013, 138, 194307.	3.0	19
45	Sensitivity of vibrational spectroscopy of optically trapped SrLi and CaLi molecules to variations in <i>m</i> /sub>/si>m _e /i>. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 025001.	1.5	31
46	Synthesis, Structure, and Reactivity of Lewis Base Stabilized Plumbacyclopentadienylidenes. Chemistry - A European Journal, 2013, 19, 16946-16953.	3.3	32
47	Frequency uncertainty estimation for the 40 CaH+vibrational transition frequencies observed by Raman excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 185401.	1.5	10
48	Accuracy estimations of overtone vibrational transition frequencies of optically trapped <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mn>174</mml:mn></mml:msup></mml:math> Yb <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow 2012="" 95<="" td=""><td>2.5</td><td>20</td></mml:mrow></mml:msup></mml:math>	2.5	20
49	/> <mml:mn>6</mml:mn> Li molecules. Physical Review A, 2012, 85, . Ab initio study on potential energy curves of electronic ground and excited states of 40CaH+ molecule. Chemical Physics Letters, 2012, 521, 31-35.	2.6	16
50	Theoretical and experimental investigation of nickel isotopic fractionation in species relevant to modern and ancient oceans. Geochimica Et Cosmochimica Acta, 2011, 75, 469-482.	3.9	64
51	Proposed detection of variation inmp/meusing a vibrational transition frequency of a CaH+ion Estimated accuracies of pure XH+(X: even isotopes of group II atoms) vibrational transition frequencies: towards the test of the variance inmp/me. Journal of Physics B: Atomic, Molecular and Optical Physics. 2011, 44, 209802.	1.5	2
52	Estimated accuracies of pure XH+(X: even isotopes of group II atoms) vibrational transition frequencies: towards the test of the variance inmp/me. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 025402.	1.5	33
53	Ab initiostudy of permanent electric dipole moment and radiative lifetimes of alkaline-earth-metalLi molecules. Physical Review A, 2011, 84, .	2.5	35
54	Magnetic-field effects in transitions of XLi molecules (X: even isotopes of group II atoms). Physical Review A, 2011, 84, .	2.5	14

#	ARTICLE Through the Stark shift from the vibrational transition frequency of optically	IF	CITATIONS
55	trapped <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>2.5</td><td>46</td></mml:math>	2.5	46
56	/> <mml:mn>6 Li molecules. Physical Review A, 2011, 84, . Relativistic calculations of ground and excited states of LiYb molecule for ultracold photoassociation spectroscopy studies. Journal of Chemical Physics, 2010, 133, 124317.</mml:mn>	3.0	36
57	<i>Ab initio</i> study on vibrational dipole moments of XH ⁺ molecular ions: X = ²⁴ Mg, ⁴⁰ Ca, ⁶⁴ Zn, ⁸⁸ Sr, ¹¹⁴ Cd, ¹³⁸ 202Hg. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 245102.	ıря Ва ,∢su	p> 3 4/4
58	Ligand effect on uranium isotope fractionations caused by nuclear volume effects: An <i>ab initio</i> relativistic molecular orbital study. Journal of Chemical Physics, 2010, 133, 044309.	3.0	30
59	Experimental and Theoretical Investigation of Isotope Fractionation of Zinc between Aqua, Chloro, and Macrocyclic Complexes. Journal of Physical Chemistry A, 2010, 114, 2543-2552.	2.5	70
60	Mass-Dependent and Mass-Independent Isotope Effects of Zinc in a Redox Reaction. Journal of Physical Chemistry A, 2009, 113, 12225-12232.	2.5	27
61	Relativistic Multireference Perturbation Theory: Complete Active-Space Second-Order Perturbation Theory (CASPT2) With The Four-Component Dirac Hamiltonian. Challenges and Advances in Computational Chemistry and Physics, 2008, , 157-177.	0.6	11
62	An <i>ab initio</i> molecular orbital study of the nuclear volume effects in uranium isotope fractionations. Journal of Chemical Physics, 2008, 129, 164309.	3.0	78
63	An <i>ab initio</i> study based on a finite nucleus model for isotope fractionation in the U(III)–U(IV) exchange reaction system. Journal of Chemical Physics, 2008, 128, 144309.	3.0	30
64	The relativistic complete active-space second-order perturbation theory with the four-component Dirac Hamiltonian. Journal of Chemical Physics, 2006, 125, 234110.	3.0	46
65	Electronic structures of PtCu, PtAg, and PtAu molecules: a Dirac four-component relativistic study. Chemical Physics, 2005, 311, 129-137.	1.9	19
66	A four-index transformation in Dirac's four-component relativistic theory. Chemical Physics Letters, 2004, 388, 68-73.	2.6	46
67	A theoretical study of the low-lying states of the AuSi molecule: An assignment of the excited A and D states. Journal of Chemical Physics, 2002, 117, 7960-7967.	3.0	23
68	Accurate relativistic Gaussian basis sets for H through Lr determined by atomic self-consistent field calculations with the third-order Douglas–Kroll approximation. Journal of Chemical Physics, 2001, 115, 4463-4472.	3.0	158